Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir ,j'ai un exercice de maths que je n'arrive pas a faire, j'espere que vous allez pouvoir m'aider: Une parobole P d'équation y=ax²+bx+c passe par les points A(0;2) , B(1;3) et C(3;-1). 1.a) En utilisant le fait que P passe par A,calculer C. b) En utilisant le fait que P passe par B et C expliquer pourquoi a et b sont solutions du systeme (S) a+b=1 3a+b=-1 c) Resolvez (S) et deduisez en une equation de P d) On note I et J les points d'intersection de P et de l'axe des abscisses Calculez les abscisses de I et de J (2.sur votre calculatrice graphique , programmez le tracé de la parabole P et constatez qu'elle semble effectivement passer par les points A,B,C,I,J) Merci d'avance !

Sagot :

Bonjour,

Une parobole P d'équation y=ax²+bx+c passe par les points A(0;2) , B(1;3) et C(3;-1)

1) a) P passe par A (0,2) donc

2=a*0²+b*0+c
c = 2

b) P passe par B(1;3) donc
a+b+2=3
a + b = 3 - 2
a + b = 1

et par C(3;-1) donc
9a+3b+2=-1
9a + 3b = -1 - 2
3(3a + b) = -3
3a + b = -3/3
3a + b = -1

c) résoudre le système :

a+b=1 => a = 1 - b
3a+b=-1

donne par substitution
3(1-b)+b= -1
3-3b + b = -1
-2b = -1 - 3
2b = 4
b = 4/2
b = 2
d'où b=2 et a=1-b=1 - 2 = -1

(P) y=-x²+2x+2

-x²+2x+2 = 0

Delta = 2^2 - 4 * (-1) * 2
Delta = 4 + 8
Delta = 12
Vdelta = V12 = 2V3 > 0 donc 2 solutions

X1 = (-2 - 2V3)/(2 * -1) = (-2 - 2V3)/(-2)
X1 = 1 + V3
X2 = (-2 + 2V3)/(-2)
X2 = 1 - V3

Donc :
xi = 1 + V3
xj = 1 - V3
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.