Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Exercice1
Partie A
soit g la fonction définie sur ]0,+l'infinie[par g(x)=2lnx - x² -2
   1)calculer g'(x) puis faire le tableau de variation de g , on calculera les limites.
   2)En déduire le signe de g(x)sur ]0,+∞[.
Partie B
on considère maintenant f definie sur ]0,+∞[ par f(X) = -2lnx/x -x+2.
   1)a) Calculer la dérivée de f ' de la fonction f et montrer que pour tout x de
]0,+l'infinie[ f ' (x)=g(x) / x² . En déduire le signe de f ' (x) 
     b) Calculerr les limites de f en 0 et +∞.
     c) Dresser le tableaux de variation de f . Donner la valeur exacte de f(1/2), f(1), f(2), f(e).
  
PS: Je suis dans la grande detresse devant cette exercice alors si quelqu'un pourrais m'aider sa m’arrangerais grandement. Merci d'avance. 

Sagot :

1) g'(x) = 2/x - 2x =(2 - 2x²)/x = 2(1-x²)/x  NB vu le domaine x >0
      x           -1     0                     1                       infini
 g'(x)      -    0     |         +           0        -
g(x)                    |-00    /           -3          \            -00
la lim qd x tend vers l'infini n'est pas simple à trouver. On peut se dire que -x² varie beaucoup plus fort vers 00 que lnx ou alors tu entres ta fonction dans "table" et tu donnes des valeurs très grandes à x. Je suis certain du résultat.
2) évidemment la fonction est négative sur le domaine.
Partie B
1) f'(x) = -2((x.1/x - lnx)/x²) -1 = -2(1 - lnx)/x² - 1 
g(x)/x² = (2lnx - x² -2)/x² = 2lnx/x² - 1 - 2/x² = -2(1-lnx)/x² - 1 
f'(x) est donc toujours négative.
b) lim en o lim(lnx/x) = lim(1/x/1) = 00 pour le reste, 0 et 2 donc lim en 0 =00
lim en 00 lim -2lnx/x = -2lim(1/x/1) = 0 - 00 + 2 donc lim en 00 = -00 
pour les racines de f'(x) il faut (-2(1-lnx)-x²)/x² = 0
donc 
-2(1-lnx) = x² ou lnx = 1 + x²/2 pour résoudre ça j'ai besoin de ma calculatrice ,fonction "table" j'entre lnx et 1 + x²/2 et je fais calculer par pas de 0,1 entre 1 et 2 
je conclus que la dérivée n'a jamais de racine et est toujours négative.
comme tableau, tu as la fonction qui varie de 00 à -00  elle a une racine autour de 1,5
valeurs f(1/2) = 4,27 ; f(1) = 1 ; f(2)= -0,693 ; f(e) = -1,454
voilà a fait 560' que je suis dessus j'espère que ça ira, sinon fait signe.



Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.