Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Le nombre de lots est un
diviseur commun Ă 1053 et 1755. Si on veut que le nombre de lots soit maximum,
il faut calculer le PGCD:
1755 = 1053*1 + 702
1053 = 702*1 + 351
702 = 351 *2 +0
Le PGCD est donc 351
Il y aura par lot :
1755 /351 = 5 cĂ´nes
1053 /351 = 3 porcelaines
Il pourra réaliser 351 lots de 5 cônes et 3 porcelaines
1755 = 1053*1 + 702
1053 = 702*1 + 351
702 = 351 *2 +0
Le PGCD est donc 351
Il y aura par lot :
1755 /351 = 5 cĂ´nes
1053 /351 = 3 porcelaines
Il pourra réaliser 351 lots de 5 cônes et 3 porcelaines
Bonjour,
Pour qu'il n'y ait pas de reste, il faut que le nombre de lots soit un diviseur du nombre de coquillages et du nombre de porcelaines, en d'autres termes, il faut qu'il soit un diviseur commun Ă 1755 et Ă 1053.
Le nombre maximal de lots est donc le plus grand diviseur commun (PGCD) de 1755 et 1053. On peut le calculer avec l'algorithme d'Euclide :
[tex]1755 = 1\times 1053 + 702\\ 1053 = 1\times 702 + 351\\ 702 = 2\times 351 + 0[/tex]
Le PGCD est le dernier reste non nul, Ă savoir 351.
C'est donc le nombre maximal de lots qu'il pourra réaliser.
Dans chaque lot, il y aura 1755/351 = 5 coquillages et 1053/351 = 3 porcelaines.
Si tu as des questions, n'hésite pas! =)
Pour qu'il n'y ait pas de reste, il faut que le nombre de lots soit un diviseur du nombre de coquillages et du nombre de porcelaines, en d'autres termes, il faut qu'il soit un diviseur commun Ă 1755 et Ă 1053.
Le nombre maximal de lots est donc le plus grand diviseur commun (PGCD) de 1755 et 1053. On peut le calculer avec l'algorithme d'Euclide :
[tex]1755 = 1\times 1053 + 702\\ 1053 = 1\times 702 + 351\\ 702 = 2\times 351 + 0[/tex]
Le PGCD est le dernier reste non nul, Ă savoir 351.
C'est donc le nombre maximal de lots qu'il pourra réaliser.
Dans chaque lot, il y aura 1755/351 = 5 coquillages et 1053/351 = 3 porcelaines.
Si tu as des questions, n'hésite pas! =)
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.