Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

DEVOIR SUITES 1S

Bonjour, j'ai un peu de mal avec ce devoir pour la rentrée 

soit Un = 1/k² avec k allant de 1 à n (n≥1) 
1. calculer les quatres premiers termes de Un 
J'ai trouvé: U1=1 ; U2= 5/4 ; U3=49/36 et U4=205/144 

2. justifier que Un est strictement croissante 
je fais Un+1-Un =(Un+1)/(k+1)²-Un

et la je bloque :/

 

3.a. 
il faut prouver que pour k>(ou égale à 2 ) 1/k²<1/(k-1)-1/k 
pour cela j ai mis sur le même dénominateur : 
1/(k-1)-1/k=1/(k²-k) 
or, k²>k²-k 
donc 1/k²<1/(k²-k) 
3.b. En sommant les inégalités obtenues pour k variant de 2 à n, établir que Un<2-(1/n) 
je ne sais pas comment faire. 
3.c.La suite Un peut elle tendre vers + l'infinie ? On admet que la suite (Un) tend vers le réel l= pi ²/6 
d. donner une valeur décimale approchée par défaut à 10^-3 près de cette limite l. 
e. Ecrire un algorithme qui permet de déterminer à partir de quel entier n, on a Un> 1.64 
f. Déterminer cette valeur à l'aide de la calculatrice.

 

 

 

 

Aider moi s'il vous plait !!! 

 

Sagot :

Bonsoir,

[tex]u_n=\sum_{k=1}^{n}\dfrac{1}{k^2}[/tex]

1) [tex]u_1=1\ \ ;\ \ u_2=\dfrac{5}{4}\ \ ;\ \ u_3=\dfrac{49}{36}\ \ ;\ \ u_4=\dfrac{205}{144}[/tex]

2) [tex]u_{n+1}-u_n=\dfrac{1}{(n+1)^2}>0\Longrightarrow u_{n+1}-u_n>0\Longrightarrow u_{n+1}>u_n[/tex]

Donc la suite  [tex](u_n)[/tex]  est croissante.

3a) Pour k ≥ 2,  

[tex]\dfrac{1}{k-1}-\dfrac{1}{k}=\dfrac{k-(k-1)}{k(k-1)}\\\\=\dfrac{k-k+1}{k(k-1)}\\\\=\dfrac{1}{k(k-1)}\\\\>\dfrac{1}{k\times k}\\\\>\dfrac{1}{k^2}[/tex]

Donc   
[tex]\dfrac{1}{k^2}<\dfrac{1}{k-1}-\dfrac{1}{k}[/tex]

3b)  [tex]\sum_{k=2}^{n}\dfrac{1}{k^2}\ \leq\ \sum_{k=2}^{n}\dfrac{1}{k-1}-\sum_{k=2}^{n}\dfrac{1}{k}\\\\u_n-1\ \leq\ \sum_{k=1}^{n-1}\dfrac{1}{k}-\sum_{k=2}^{n}\dfrac{1}{k}\\\\u_n-1\ \leq\ 1+\sum_{k=2}^{n-1}\dfrac{1}{k}-\sum_{k=2}^{n-1}\dfrac{1}{k}-\dfrac{1}{n}\\\\u_n-1\ \leq\ 1-\dfrac{1}{n}\\\\u_n\ \leq\ 2-\dfrac{1}{n}[/tex]

3c) La suite ne peut pas tendre vers l'infini car elle est croissante et bornée par 2.
En effet :  [tex]u_n\ \leq\ 2-\dfrac{1}{n}\le2[/tex].

La suite (Un) converge vers une limite finie.

d)  [tex]\lim_{n\to+\infty}\ u_n=\dfrac{\pi^2}{6}\approx1,645[/tex]

e) Voici un algorithme.

VARIABLES

n ; u : nombres réels

DEBUT_ALGORITHME
n PREND_LA_VALEUR 1
u PREND_LA_VALEUR 1

TANT_QUE (u<=1.64) FAIRE
      DEBUT_TANT_QUE
      u PREND_LA_VALEUR u+1/((n+1)*(n+1))
      n PREND_LA_VALEUR n+1
      FIN_TANT_QUE

AFFICHER n

FIN_ALGORITHME.

f) La valeur de n est égale à 203.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.