Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonjour,
Pour le F, c'est l'application d'une formule du cours sur les racines carrées :
[tex]F = \frac{\sqrt{27}}{2\sqrt 3}\\ F = \frac{\sqrt{3\times 9}}{2\sqrt 3}\\ F= \frac{\sqrt 3 \times \sqrt 9}{2\sqrt 3}\\ F = \frac{3\sqrt 3}{2\sqrt 3}\\ F = \frac 32[/tex]
Pour le G, il s'agit d'une des identités remarquables : (a-b)² = a²-2ab+b²
[tex]G = \left(2\sqrt 3 -1\right)^2\\ G = \left(2\sqrt 3\right)^2 -2\times 1 \times 2\sqrt 3 +1^2\\ G = 4\times 3 -4\sqrt 3 +1\\ G = 12-4\sqrt 3 +1\\ G= 13-4\sqrt 3[/tex]
Pour le H, c'est juste la double distributivité :
[tex]H = \left(6+12\sqrt 5\right)\left(1-\sqrt 5\right)\\ H = 6\times 1 -6\times \sqrt 5 +12\sqrt 5 \times 1 -12\sqrt 5 \times \sqrt 5\\ H = 6-6\sqrt 5+12\sqrt 5 -12\times 5\\ H = 6+6\sqrt 5 -60\\ H = -54+6\sqrt 5[/tex]
Pour le I, il s'agit d'une autre identité remarquable : (a+b)(a-b) = a²-b²
[tex]I = \left(\sqrt 5 -3\sqrt 2\right)\left(\sqrt 5 +3\sqrt 2\right)\\ I = \left(\sqrt 5\right)^2 -\left(3\sqrt 2\right)^2\\ I = 5-9\times 2\\ I = 5-18\\ I = -13[/tex]
Pour le K, il s'agit de l'application d'une formule du cours sur les racines carrées :
[tex]K = 3\sqrt{50} \times \sqrt{18} \times 2\sqrt 2\\ K = 3\sqrt{2\times 25}\times \sqrt{2\times 9}\times 2\sqrt 2\\ K = 3\sqrt 2\times \sqrt {25} \times \sqrt 2 \times \sqrt 9 \times 2\sqrt 2\\ K = 3\sqrt 2 \times 5 \times \sqrt 2 \times 3 \times 2\sqrt 2\\ K = 90\sqrt 2 \times \sqrt 2\times \sqrt 2\\ K = 180\sqrt 2[/tex]
Même chose pour le J :
[tex]J = \frac{2\sqrt 5}{3\sqrt {20}}\\ J = \frac{2\sqrt{5}}{3\times \sqrt{5\times 4}}\\ J = \frac{2\sqrt{5}}{3\times \sqrt 5 \times \sqrt 4}\\ J = \frac{2\sqrt{5}}{3\times \sqrt 5 \times \sqrt 4}\\ J = \frac{2\sqrt{5}}{6\sqrt 5}\\ J = \frac 13[/tex]
Si tu as des questions, n'hésite pas! =)
Pour le F, c'est l'application d'une formule du cours sur les racines carrées :
[tex]F = \frac{\sqrt{27}}{2\sqrt 3}\\ F = \frac{\sqrt{3\times 9}}{2\sqrt 3}\\ F= \frac{\sqrt 3 \times \sqrt 9}{2\sqrt 3}\\ F = \frac{3\sqrt 3}{2\sqrt 3}\\ F = \frac 32[/tex]
Pour le G, il s'agit d'une des identités remarquables : (a-b)² = a²-2ab+b²
[tex]G = \left(2\sqrt 3 -1\right)^2\\ G = \left(2\sqrt 3\right)^2 -2\times 1 \times 2\sqrt 3 +1^2\\ G = 4\times 3 -4\sqrt 3 +1\\ G = 12-4\sqrt 3 +1\\ G= 13-4\sqrt 3[/tex]
Pour le H, c'est juste la double distributivité :
[tex]H = \left(6+12\sqrt 5\right)\left(1-\sqrt 5\right)\\ H = 6\times 1 -6\times \sqrt 5 +12\sqrt 5 \times 1 -12\sqrt 5 \times \sqrt 5\\ H = 6-6\sqrt 5+12\sqrt 5 -12\times 5\\ H = 6+6\sqrt 5 -60\\ H = -54+6\sqrt 5[/tex]
Pour le I, il s'agit d'une autre identité remarquable : (a+b)(a-b) = a²-b²
[tex]I = \left(\sqrt 5 -3\sqrt 2\right)\left(\sqrt 5 +3\sqrt 2\right)\\ I = \left(\sqrt 5\right)^2 -\left(3\sqrt 2\right)^2\\ I = 5-9\times 2\\ I = 5-18\\ I = -13[/tex]
Pour le K, il s'agit de l'application d'une formule du cours sur les racines carrées :
[tex]K = 3\sqrt{50} \times \sqrt{18} \times 2\sqrt 2\\ K = 3\sqrt{2\times 25}\times \sqrt{2\times 9}\times 2\sqrt 2\\ K = 3\sqrt 2\times \sqrt {25} \times \sqrt 2 \times \sqrt 9 \times 2\sqrt 2\\ K = 3\sqrt 2 \times 5 \times \sqrt 2 \times 3 \times 2\sqrt 2\\ K = 90\sqrt 2 \times \sqrt 2\times \sqrt 2\\ K = 180\sqrt 2[/tex]
Même chose pour le J :
[tex]J = \frac{2\sqrt 5}{3\sqrt {20}}\\ J = \frac{2\sqrt{5}}{3\times \sqrt{5\times 4}}\\ J = \frac{2\sqrt{5}}{3\times \sqrt 5 \times \sqrt 4}\\ J = \frac{2\sqrt{5}}{3\times \sqrt 5 \times \sqrt 4}\\ J = \frac{2\sqrt{5}}{6\sqrt 5}\\ J = \frac 13[/tex]
Si tu as des questions, n'hésite pas! =)
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.