Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, j'aurais besoin d'aide pour mon devoir en pièces jointes, s'il vous plait c'est URGENT !!! SVP Merci d'avance



Sagot :

Bonjour

 Exercice 1

a) 3x+2=0
3x=-2
x=-3/2 ==> S={-3/2}

b) -7x-5=0
-7x=5
x=-5/7 ==> S={-5/7}

c)18x=0
x=0 ==> S={0}

d) (1/2)x-7=0
(1/2)x=7
x=2*7 = 14 ==> S={14}

[tex]e)\ -\dfrac{3}{7}x+\dfrac{4}{5}=0\\\\-\dfrac{3}{7}x=-\dfrac{4}{5}\\\\x=(-\dfrac{4}{5})\times(-\dfrac{7}{3})\\\\x=\dfrac{28}{15}\Longrightarrow S=\{\dfrac{28}{15}\}[/tex]


f)3(x-2) – 7(x+1) = 0
3x-6-7x-7=0
3x-7x=6+7
-4x=13
x=-13/4 ==> S={-13/4}

g) (x+1)² - 4x = (x-1)²
x²+2x+1-4x = x² - 2x + 1
x² - x² +2x -4x + 2x = 1 – 1
0x = 0 x peut être égal à n’importe quel réel ===> S = R

[tex]h)\ \dfrac{3}{5}(1-2x)- \dfrac{1}{5}(2+9x)= \dfrac{1}{5}-3x\\\\\dfrac{3}{5}-\dfrac{6}{5}x-\dfrac{2}{5}-\dfrac{9}{5}x=\dfrac{1}{5}-3x\\\\-\dfrac{6}{5}x-\dfrac{9}{5}x+3x=\dfrac{1}{5}-\dfrac{3}{5}+\dfrac{2}{5}\\\\0x=0\\\\\Longrightarrow S=R[/tex]
 

Exercice 2  

1°) f(0) = 0^3 + (3/2)*0²-6*0 = 0 ===> f(0)=0
f(2) = 2^3 + (3/2)*4-6*2 = 8 + 6 – 12=2 ===> f(2)=2
f(-1/2) = (-1/2)^3 + (3/2)*(-1/2)² - 6*(-1/2) = -1/8 +(3/2)*(1/4) + 3
= -1/8 + 3/8 + 3 = 2/8 + 3 = ¼ + 12/4 = 13/4 ===> f(-1/2)=13/4

2°) x   -3   -2,5      -2    -1,5   -1      -0,5   0     0,5   1         1,5     2    2,5       3

f(x)    4,5   8,75   10      9     6,5   3,25    0   -2,5   -3,5   -2,25    2   10    22,5

3) a)
[tex]\begin{array}{|c|ccccccc|}x&-3&&-2&&1&&3 \\ f(x)&4,5&\nearrow&10&\searrow &-3,5&\nearrow &22,5\\\end{array}[/tex]
b) Le maximum de f sur [-3 ;3] est égal à 22,5. Il est atteint pour x = 3
Le minimum de f sur [-3 ;3] est égal à -3,5. Il est atteint pour x = 1.
c) Le maximum de f sur [-3 ;1] est égal à 10. Il est atteint pour x = -2
Le minimum de f sur [-3 ;-2] est égal à 4,5. Il est atteint pour x = -3.
d) Si x € [-3 ;-2], alors 4,5 ≤ f(x) ≤ 10.
e) Si x € [-2 ;1], alors -3,5 ≤ f(x) ≤ 10.
f) Si x € [-3 ;3], alors -3,5 ≤ f(x) ≤ 22,5.
4°) Graphique en pièce jointe
5°) a) L’équation f(x) = 0 admet deux solutions. La solution entière est x = 0.
b) [tex]\alpha\approx 1,812[/tex]
c) f(x) ≥ 0 si x € [-3  ; 0]
f(x) < 0 si x € ]0  ; 1,812[
f(x) ≥ 0 si x € [1,812 ; 3]
6°) a) g est une fonction affine. Sa représentation graphique est une droite.
b) g(-3) = (-1/2)*(-3)+3 = 3/2 + 3 = 3/2 + 6/2 = 9/2 = 4,5. Vu que g(-3) = 4,5, le point A(-3 ; 4,5) appartient bien à la courbe représentative de la fonction g.  
g(2) = (-1/2)*2+3 = -1 + 3 = 2.
Vu que g(2) = 2, le point B(2 ; 2) appartient bien à la courbe représentative de la fonction g.
c) f(-1/2) = 13/4 = 3,25 (voir tableau de la question 2)
g(-1/2) = (-1/2)*(-1/2) + 3 = 1/4 + 3 = 1/4 + 12/1 = 13/4
Par conséquent le point C(-1/2 : 13/4) appartient à Cf et à (D).
d) Si x € [-3 ; -1/2[, alors Cf est au-dessus de (D)
Si x € ]-1/2 ;2[, alors Cf est en-dessous de (D)
Si x € ]2 ;3], alors Cf est au-dessus de (D)          
View image Аноним
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.