Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

URGENT !!!Coucouu tout le monde ! :) Alors j'ai un DM a faire pour le Lundi deCoucouu tout le monde ! :)
Alors j'ai un DM a faire pour le Lundi de la rentré, et je suis tellement nul Math que je vous demande de l'aide.Alors si vous connaisses les réponses merci de bien mette comment vous les avez trouver !

ABCD est un losange de centre O tel que :
AO = 7/15 cm et OB = 8/5 cm . 
a) démontrer que le triangle AOB est rectangle en O.
b) Calculer AB. (On donnera sa valeur exacte.)
c) Calculer le périmètre du losange ABCD.(On donnera sa valeur exacte et sa valeur approchée au dixième.)
d) (1) Calculer l'aire du triangle AOB. (On donnera sa valeur exacte.)    
    (2) Calculer l'aire du losange ABCD. (On donnera sa valeur exacte.)
e) La perpendiculaire à (AB) passant par O coupe (AB) en H, calculer OH. (On donnera sa valeur exacte.)
Voilà, j'espère que vous serez plusieurs a avoir trouver ! :)
-Sabrine.


Sagot :

ABCD est un losange de centre O tel que :

AO = 7/15 (cm)

OB = 8/5 (cm)

a) Démontrer que le triangle AOB est rectangle en O

Si ABCD est un losange, alors ses 2 diagonales sont ┴. Donc : AC ┴ BD → AO ┴ OB

→ le triangle AOB est rectagle en O.

Calculer AB

Dans le triangle rectangle AOB, le théorème de Pythagore vous permet d'écrire :

AB² = AO² + OB²

AB² = (7/15)² + (8/5)²

AB² = (7²/15²) + (8²/5²)

AB² = (49/225) + (64/25) → vous réduisez au même dénominateur, ici, c'est : 225

AB² = (49/225) + [(64 * 9)/(25 * 9)]

AB² = (49/225) + (576/225)

AB² = (49 + 576)/225

AB² = 625/225 → vous simplifiez par 25 en haut et en bas

AB² = 25/9

AB² = 5²/3²

AB² = (5/3)²

AB = 5/3

c) Calculer le périmètre du triangle AOB

p = AO + OB + AB

p = (7/15) + (8/5) + (5/3) → vous réduisez au même dénominateur, ici, c'est : 15

p = (7/15) + (24/15) + (25/15)

p = (7 + 24 + 25)/15

p = 56/15

p ≈ 3,733 cm

p = 3,8 cm (valeur arrondie au dixième près, c’est-à-dire à 1 chiffre après la virgule)
d) Calculer l'aire du triangle AOB

a = (AO * OB)/2

a = [(7/15) * (8/5)]/2

a = [(7 * 8)/(15 * 5)]/2

a = [56/75]/2

a = 56/(75 * 2)

a = (28 * 2)/(75 * 2) → vous simplifiez par 2

a = 28/75 → ce sont des cm²


e) Calculer l'aire du losange ABCD

L'aire du losange, c'est 4 fois l'aire du triangle

A = 4 * a

A = 4 * (28/75)

A = (4 * 28)/75

A = 112/75 → ce sont des cm²


La perpendiculaire à (AB) passant par O coupe (AB) en H. Calculer OH

Vous voyez si vous avez fait un dessin, que :

OH = BC/2 → et vous savez que : BC = AB

OH = AB/2

OH = (5/3)/2

OH = 5/(3 * 2)

OH = 5/6 cm











Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.