Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Bonsoir et bonne année
A=(2x-3)(2x+3)-(3x+1)(2x-3)
1. Développer puis réduire A
A = 4x² +6x -6x -9 - (6x² - 9x +2x -3)
A = 4x² -9 -6x² +9x -2x +3
A = -2x² -7x -6
2. Factoriser A
A = (2x-3)(2x+3) - (3x +1)
A = (2x-3)(2x +3 - 3x -1)
A = (2x+3)( -x +2)
3. Résoudre l'équation (2x-3)(-x+2)=0
Pour qu'un produit soit nul, il suffit que l'un des 2 facteurs le soit
Donc
ou 2x-3 = 0 donc 2x = 3 et x = 3/2
ou -x +2 = 0 donc -x = -2 ou x = 2
3/2 et 2 sont donc les solutions
A=(2x-3)(2x+3)-(3x+1)(2x-3)
1. Développer puis réduire A
A = 4x² +6x -6x -9 - (6x² - 9x +2x -3)
A = 4x² -9 -6x² +9x -2x +3
A = -2x² -7x -6
2. Factoriser A
A = (2x-3)(2x+3) - (3x +1)
A = (2x-3)(2x +3 - 3x -1)
A = (2x+3)( -x +2)
3. Résoudre l'équation (2x-3)(-x+2)=0
Pour qu'un produit soit nul, il suffit que l'un des 2 facteurs le soit
Donc
ou 2x-3 = 0 donc 2x = 3 et x = 3/2
ou -x +2 = 0 donc -x = -2 ou x = 2
3/2 et 2 sont donc les solutions
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.