Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

démontrez que , quelque soient les entiers positifs x et y (y<x) le triangle ABC de cotés : AB=2xy , BC=x²-y² et AC=x²+y² est un triangle rectangle . 



Sagot :

Bonjour,

Il suffit de vérifier si AC² = AB² + BC²

[tex]AC^2 = (x^2 + y^2)^2 = x^4 + 2x^2y^2 + y^4\\\\AB^2 = (2xy)^2 = 4x^2y^2\\\\BC^2=(x^2-y^2)^2=x^4-2x^2y^2+y^4\\\\AB^2+BC^2=4x^2y^2+x^4-2x^2y^2+y^4\\\\AB^2+BC^2=x^4+2x^2y^2+y^4\\\\AB^2+BC^2=AC^2[/tex]

Par la réciproque du théorème de Pythagore, le triangle ABC est rectangle et [AC] est l'hypoténuse.
Le triangle est donc rectangle en B.
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.