Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Demonstration algébrique : Montrer que pour tout x [tex] \neq [/tex] 0, on a : 
x² - [tex] \frac{1}{x} [/tex] = [tex]\frac{(x-1)([tex] x^{2}[/tex]+x+1)}{x} [/tex] 


Sagot :

Bonsoir,

[tex]x^2-\dfrac{1}{x}=\dfrac{x^3}{x}-\dfrac{1}{x}=\dfrac{x^3-1}{x}[/tex]

[tex]\dfrac{(x-1)(x^2+x+1)}{x}=\dfrac{x^3+x^2+x-x^2-x-1}{x}=\dfrac{x^3-1}{x}[/tex]

Par conséquent,

[tex]x^2-\dfrac{1}{x}=\dfrac{(x-1)(x^2+x+1)}{x}[/tex]