Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Bonsoir,
Dans chaque cas, on cherche à montrer qu'il existe un réel k tel que u = kv.
a)
On exprime donc u en fonction de v :
[tex]\begin{cases} \vec u = 3 \vec v\\ \vec v = -2 \vec w\end{cases}\\ \begin{cases} \vec u = 3\times \left(-2\right) \times \vec w\\ \vec v = -2 \vec w\end{cases}\\ \begin{cases} \vec u = -6 \times \vec w\\ \vec v = -2 \vec w\end{cases}[/tex]
u = -6 w, donc les vecteurs u et w sont colinéaires.
b)[tex]\begin{cases} \vec u = 3 \vec v\\ \vec w = -2 \vec v\end{cases}\\ \begin{cases}\frac 13 \vec u = \vec v\\ -\frac 12\vec w = \vec v\end{cases}\\ \begin{cases}\frac 13 \vec u = -\frac 12 \vec w \\ -\frac 12\vec w = \vec v\end{cases}\\ \begin{cases}\vec u = -\frac 32 \vec w \\ -\frac 12\vec w = \vec v\end{cases}\\[/tex]
Donc u et w sont colinéaires.
c)[tex]\begin{cases}3u = v \\ -2v = w\end{cases}\\ \begin{cases}3u = v \\ v = -\frac 12 w\end{cases}\\ \begin{cases}3u = -\frac 12 w \\ v = -\frac 12 w\end{cases}\\ \begin{cases}u = -\frac 16 w \\ v = -\frac 12 w\end{cases}\\[/tex]
Donc u et w sont colinéaires.
d)
[tex]\begin{cases}3u = 4v\\ 5v = -7w\end{cases}\\ \begin{cases}\frac 34u = v\\ v = -\frac 75 w\end{cases}\\ \begin{cases}\frac 34u = -\frac 75 w\\ v = -\frac 75 w\end{cases}\\ \begin{cases}\frac 34u = -\frac 75 w\\ v = -\frac 75 w\end{cases}\\ \begin{cases}u = -\frac {28}{15} w\\ v = -\frac 75 w\end{cases}\\[/tex]
Donc u et w sont colinéaires.
Si tu as des questions, n'hésite pas! =)
Dans chaque cas, on cherche à montrer qu'il existe un réel k tel que u = kv.
a)
On exprime donc u en fonction de v :
[tex]\begin{cases} \vec u = 3 \vec v\\ \vec v = -2 \vec w\end{cases}\\ \begin{cases} \vec u = 3\times \left(-2\right) \times \vec w\\ \vec v = -2 \vec w\end{cases}\\ \begin{cases} \vec u = -6 \times \vec w\\ \vec v = -2 \vec w\end{cases}[/tex]
u = -6 w, donc les vecteurs u et w sont colinéaires.
b)[tex]\begin{cases} \vec u = 3 \vec v\\ \vec w = -2 \vec v\end{cases}\\ \begin{cases}\frac 13 \vec u = \vec v\\ -\frac 12\vec w = \vec v\end{cases}\\ \begin{cases}\frac 13 \vec u = -\frac 12 \vec w \\ -\frac 12\vec w = \vec v\end{cases}\\ \begin{cases}\vec u = -\frac 32 \vec w \\ -\frac 12\vec w = \vec v\end{cases}\\[/tex]
Donc u et w sont colinéaires.
c)[tex]\begin{cases}3u = v \\ -2v = w\end{cases}\\ \begin{cases}3u = v \\ v = -\frac 12 w\end{cases}\\ \begin{cases}3u = -\frac 12 w \\ v = -\frac 12 w\end{cases}\\ \begin{cases}u = -\frac 16 w \\ v = -\frac 12 w\end{cases}\\[/tex]
Donc u et w sont colinéaires.
d)
[tex]\begin{cases}3u = 4v\\ 5v = -7w\end{cases}\\ \begin{cases}\frac 34u = v\\ v = -\frac 75 w\end{cases}\\ \begin{cases}\frac 34u = -\frac 75 w\\ v = -\frac 75 w\end{cases}\\ \begin{cases}\frac 34u = -\frac 75 w\\ v = -\frac 75 w\end{cases}\\ \begin{cases}u = -\frac {28}{15} w\\ v = -\frac 75 w\end{cases}\\[/tex]
Donc u et w sont colinéaires.
Si tu as des questions, n'hésite pas! =)
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.