Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

De nombreux peintres et architectes de la renaissance, en particulier Léonard de
Vinci, ont évoqué l'existence d'un rectangle de proportions "idéales", vérifiant
la propriété suivante:
"Lorsqu'on ôte au restangle considéré un carré
construit sur sa largueur, on obtient un nouveau rectangle, plus petit,
semblable au rectangle d'origine, c'est à dire que les rapports longueur sur
largeur sont les mêmes."

A. On note L et l la longueur et la largeur du
rectangle "idéal" ABCD.
On pose φ = L/l

1. Démontrer que l'on a: l/L
= (L-l)/l et en déduire que φ est solution de l'équation x² - x -1 = 0


2. Vérifier que x² - x -1 = (x - 1/2)² - 5/4
 Je bloque sur toutes les questions de l'exercices, aidez moi s'il vous plaît.

Sagot :

Bonjour,
Le nouveau rectangle à un des côtés qui mesure l et l'autre qui mesure L-l.
Comme il a les mêmes proportions que le rectangle "idéal", nécessairement 
l/L = (L-l)/l (ça ne peut pas être L/l=(L-l)/l sinon ça voudrait dire que L=L-l ce qui serait absurde)
donc I/L=L/l -1
On pose x= φ (=L/l)
ça donne 1/x=x-1
donc x-1-1/x=0
donc (x²-x-1)/x=0
donc x²-x-1=0
2) je te laisse vérifier et ensuite j'imagine qu'il faut calculer φ, donc on factorise
(x - 1/2)² - 5/4= (x-1/2+racine(5/4))(x-1/2-racine(5/4))
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.