Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Définition du nombre d'or
Le nombre d'or est le nombre réel positif noté phi.
Le nombre d'or est égal à la fraction [tex] \frac{a}{b} [/tex] si a et b sont deux nombres en proportion d'extrême et de moyenne raison.
Le nombre d'or est donné par la formule φ = [tex] \frac{1+ \sqrt{5} }{2} [/tex]
Pour info sa valeur approchée est 1,6180339887
Précision : la proportion définie par [tex]a[/tex] et [tex]b[/tex] est dite "d'extrême et moyenne raison" lorsque [tex]a[/tex] est à [tex]b[/tex] ce que [tex]a + b[/tex] est à [tex]a[/tex], soit :
lorsque [tex] \frac{a+b}{a} = \frac{a}{b} [/tex]
Le rapport [tex] \frac{a}{b} [/tex] est alors égal au nombre d'or
Un rectangle de longueur [tex]a[/tex] et de largeur [tex]b[/tex] tel que [tex]a[/tex] et [tex]b[/tex] soient en proportion d'extrême et de moyenne raison. Plus simplement, un rectangle est dit d'or si le rapport entre la longueur et la largeur est égal au nombre d'or.
Prenons le rectangle d'or de longueur a et de largeur b, le plus simple est de considérer le carré de côté b. En prenant le milieu de la base comme centre, on trace un cercle passant par les deux sommets opposés.
L'intersection de la droite prolongeant la base du carré et du cercle détermine l'extrémité de la base du rectangle d'or.
Il apparaît comme construit par l'adjonction à un carré de côté de longueur [tex]b[/tex], d'un rectangle de côtés de longueur [tex]b[/tex] et [tex]a - b[/tex], comme le montre ta figure de problème.
Un rapide calcul montre que ce rectangle hachuré est encore d'or :
[tex] \frac{a - b}{b} = \frac{a}{b}-1= \frac{a+b}{a} -1 = \frac{b}{a} = \frac{1}{phi} [/tex]
donc[tex] \frac{b}{a-b} =[/tex]φ
Le nombre d'or est le nombre réel positif noté phi.
Le nombre d'or est égal à la fraction [tex] \frac{a}{b} [/tex] si a et b sont deux nombres en proportion d'extrême et de moyenne raison.
Le nombre d'or est donné par la formule φ = [tex] \frac{1+ \sqrt{5} }{2} [/tex]
Pour info sa valeur approchée est 1,6180339887
Précision : la proportion définie par [tex]a[/tex] et [tex]b[/tex] est dite "d'extrême et moyenne raison" lorsque [tex]a[/tex] est à [tex]b[/tex] ce que [tex]a + b[/tex] est à [tex]a[/tex], soit :
lorsque [tex] \frac{a+b}{a} = \frac{a}{b} [/tex]
Le rapport [tex] \frac{a}{b} [/tex] est alors égal au nombre d'or
Un rectangle de longueur [tex]a[/tex] et de largeur [tex]b[/tex] tel que [tex]a[/tex] et [tex]b[/tex] soient en proportion d'extrême et de moyenne raison. Plus simplement, un rectangle est dit d'or si le rapport entre la longueur et la largeur est égal au nombre d'or.
Prenons le rectangle d'or de longueur a et de largeur b, le plus simple est de considérer le carré de côté b. En prenant le milieu de la base comme centre, on trace un cercle passant par les deux sommets opposés.
L'intersection de la droite prolongeant la base du carré et du cercle détermine l'extrémité de la base du rectangle d'or.
Il apparaît comme construit par l'adjonction à un carré de côté de longueur [tex]b[/tex], d'un rectangle de côtés de longueur [tex]b[/tex] et [tex]a - b[/tex], comme le montre ta figure de problème.
Un rapide calcul montre que ce rectangle hachuré est encore d'or :
[tex] \frac{a - b}{b} = \frac{a}{b}-1= \frac{a+b}{a} -1 = \frac{b}{a} = \frac{1}{phi} [/tex]
donc[tex] \frac{b}{a-b} =[/tex]φ
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.