Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Montrer que si une fonction est paire alors elle ne peut être strictement croissante

 

.Montrer que le produit d'une fonction paire et d'une fonction impaire est une fonction impaire



Sagot :

Soit f une fonction paire et croissante et g son inverse. Soit I un intervalle de R tel que I est l'ensemble de définition de f.
Soient x et y deux réels de I.
On a x<y alors f(x)<f(y) car la fonction f est strictement croissante.
f(x)=f(-x) et f(y)=f(-y) puisque on suppose que f est paire.
Alors on a f(-x)<f(-y) et g(f(-x))<g((f(-x)) car puisque f est croissante g l'est aussi