Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
de 1 à 6 les résultats sont les suivants dans l'ordre
20,271 ; 10,369 ; 7,3361 ;6,3549 ; 6,9682; 10,057
le coût moyen le plus bas semble être obtenu pour x = 4000 et vaut 6 394,9€
c'est un calcul de dérivée
C'(x) = (0,1x.e^x - 0,1xe^x -20 )/x² = (0,1.e^x(x-1)-20)/x²
f(x)= 0.1x e^x -0.1e^x -20 => f(x) = 0,1.e^x(x-1)-20
f'(x) = 0,1e^x(x-1) + 0,1.e^x = 0,1.e^x(x-1+1) = 0,1.x.e^x
pour x appartenant à [0;6] f'(x) >=0 donc f(x) toujours croissante suer l’intervalle
f(0) = -20,1 et f(6) = 181,71
la courbe rencontre donc une seule fois l'axe des x entre 4 et 5
la racine vaut environ 4,15 f(x) est négative avant et positive après.donc comme f(x) était la dérivée de la fonction de départ, on voit que pour 4,15 cette fonction initiale passe par un minimum.
c'est à peu près la réponse trouvée avant (4000 tonnes)
20,271 ; 10,369 ; 7,3361 ;6,3549 ; 6,9682; 10,057
le coût moyen le plus bas semble être obtenu pour x = 4000 et vaut 6 394,9€
c'est un calcul de dérivée
C'(x) = (0,1x.e^x - 0,1xe^x -20 )/x² = (0,1.e^x(x-1)-20)/x²
f(x)= 0.1x e^x -0.1e^x -20 => f(x) = 0,1.e^x(x-1)-20
f'(x) = 0,1e^x(x-1) + 0,1.e^x = 0,1.e^x(x-1+1) = 0,1.x.e^x
pour x appartenant à [0;6] f'(x) >=0 donc f(x) toujours croissante suer l’intervalle
f(0) = -20,1 et f(6) = 181,71
la courbe rencontre donc une seule fois l'axe des x entre 4 et 5
la racine vaut environ 4,15 f(x) est négative avant et positive après.donc comme f(x) était la dérivée de la fonction de départ, on voit que pour 4,15 cette fonction initiale passe par un minimum.
c'est à peu près la réponse trouvée avant (4000 tonnes)
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.