Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

comparer les deux rapports : (a+b)²÷a²-b² et a²+b²÷(a-b)²
je ne arrive pas a trouver le résultat


Sagot :

(a+b)²÷(a²-b²)
=((a+b)²(a-b)²) / ((a²-b²)(a-b)²)
=((a²-b²)²)/
((a²-b²)(a-b)²)
=(a^4-2a²b²+b^4)/
((a²-b²)(a-b)²)

 (a²+b²)÷(a-b)²

=((a²+b²)(a²-b²))/((a²-b²)(a-b)²)
=(a^4-b^4)/((a²-b²)(a-b)²)

de plus (a+b)²(a-b)²=(a²-b²)²=a^4-2a²b²+b^4
et (a²+b²)(a²-b²)=a^4-b^4
avec a^4-2a²b²+b^4 < a²-b^4
soit -2a²b² < -2(b²)²
soit (b²)² < a²b²
soit b² < a²

donc si a² < b² alors a^4-2a²b²+b^4 > a^4-b^4
                       donc
(a+b)²÷(a²-b²) >  (a²+b²)÷(a-b)²

de même si a² > b² alors a^4-2a²b²+b^4 < a^4-b^4
                       donc
(a+b)²÷(a²-b²) <  (a²+b²)÷(a-b)²






Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.