Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour à tous! Aujourd'hui je poste ce topic car j'ai grandement besoin d'aide pour un exercice qui me sembler facile au départ mais qui en fin de compte, me mets quelques bâtons dans les roues :p! Si vous pouviez m'aider ce serait vraiment géniale  

Le but de l'exercice est de résoudre l'équation cosx=sin de [tex] \pi [/tex] sur 5 

1) Justifier que sin de [tex] \pi [/tex] sur 5=cos3[tex] \pi [/tex] sur 10 

2)Résolver l'équation de départ 


AIDE: Sinx=cos([tex] \pi [/tex] sur 2 - x)

Sagot :

1) sin x = cos (Pi/2 - x)
sin (Pi/5) = cos (Pi/2 - (pi/5))
sin (Pi/5) = cos (5Pi/10 -2Pi/10)
sin (Pi/5) = cos (3Pi/5)

2) cos x= sin (Pi/5)
or sin (Pi/5) = cos (3Pi/5)
donc
cos x = cos (3Pi/5)
donc
x = 3Pi/5