Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour à tous! Aujourd'hui je poste ce topic car j'ai grandement besoin d'aide pour un exercice qui me sembler facile au départ mais qui en fin de compte, me mets quelques bâtons dans les roues :p! Si vous pouviez m'aider ce serait vraiment géniale  

Le but de l'exercice est de résoudre l'équation cosx=sin de [tex] \pi [/tex] sur 5 

1) Justifier que sin de [tex] \pi [/tex] sur 5=cos3[tex] \pi [/tex] sur 10 

2)Résolver l'équation de départ 


AIDE: Sinx=cos([tex] \pi [/tex] sur 2 - x)


Sagot :

1) sin x = cos (Pi/2 - x)
sin (Pi/5) = cos (Pi/2 - (pi/5))
sin (Pi/5) = cos (5Pi/10 -2Pi/10)
sin (Pi/5) = cos (3Pi/5)

2) cos x= sin (Pi/5)
or sin (Pi/5) = cos (3Pi/5)
donc
cos x = cos (3Pi/5)
donc
x = 3Pi/5
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.