Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
1) Prouver que le triangle MON est rectangle en N :
Le point N appartient au cercle dediamètre [OM].
Or, si un triangle est inscrit dans un cercle de diamètre, l'un de ses côtés, alors ce triangle est rectangle et ce côté est l'hypoténuse.
Le triangle MNO est donc rectangle en N
2) Justifiez que les droites (MN) et (QP) sont parallèles :
Le triangle MNO est rectangle en N, donc (MN) est perpendiculaire à (NO).
Le triangle OPQ est rectangle en P, donc (PQ) est perpendiculaire à (PO).
Les points N, O et P sont alignés, donc les droites (PO) et (NO) sont confondues.
Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles.
Donc (MN) et (PQ) sont parallèles
3) Dans le cas où ON = 5 cm, calculer la distance OP
Les droites (MQ) et (NP) sont sécantes en O.
Les droites (MN) et (PQ) sont parallèles
D'après le théorème de Thalès, on a :
OM/OQ = ON/OP = MN/QP
Si on remplace les lettres par les valeurs, cela donne :
7,5/4,5 = 5/OP
Donc OP = 5 x 4,5 = 2,4
7,5
Alors OP = 2,4 cm
Le point N appartient au cercle dediamètre [OM].
Or, si un triangle est inscrit dans un cercle de diamètre, l'un de ses côtés, alors ce triangle est rectangle et ce côté est l'hypoténuse.
Le triangle MNO est donc rectangle en N
2) Justifiez que les droites (MN) et (QP) sont parallèles :
Le triangle MNO est rectangle en N, donc (MN) est perpendiculaire à (NO).
Le triangle OPQ est rectangle en P, donc (PQ) est perpendiculaire à (PO).
Les points N, O et P sont alignés, donc les droites (PO) et (NO) sont confondues.
Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles.
Donc (MN) et (PQ) sont parallèles
3) Dans le cas où ON = 5 cm, calculer la distance OP
Les droites (MQ) et (NP) sont sécantes en O.
Les droites (MN) et (PQ) sont parallèles
D'après le théorème de Thalès, on a :
OM/OQ = ON/OP = MN/QP
Si on remplace les lettres par les valeurs, cela donne :
7,5/4,5 = 5/OP
Donc OP = 5 x 4,5 = 2,4
7,5
Alors OP = 2,4 cm
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.