Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonsoir
1) [tex]cos^2x+sin^2x=1\Longrightarrow cos^2x=1-sin^2x[/tex]
et
[tex]cos^2x+sin^2x=1\Longrightarrow sin^2x=1-cos^2x[/tex]
Donc :
[tex]cos^2x-sin^2x=(1-sin^2x)-sin^2x=1-2sin^2x[/tex]
et
[tex]cos^2x-sin^2x=cos^2x-(1-cos^2x)=cos^2x-1+cos^2x=2cos^2x-1[/tex]
2) [tex]tan\ x=\dfrac{sinx}{cosx}\Longrightarrow tan^2\ x=\dfrac{sin^2x}{cos^2x}[/tex]
Donc
[tex]1+tan^2x=1+\dfrac{sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{cos^2x+sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{1}{cos^2x}[/tex]
1) [tex]cos^2x+sin^2x=1\Longrightarrow cos^2x=1-sin^2x[/tex]
et
[tex]cos^2x+sin^2x=1\Longrightarrow sin^2x=1-cos^2x[/tex]
Donc :
[tex]cos^2x-sin^2x=(1-sin^2x)-sin^2x=1-2sin^2x[/tex]
et
[tex]cos^2x-sin^2x=cos^2x-(1-cos^2x)=cos^2x-1+cos^2x=2cos^2x-1[/tex]
2) [tex]tan\ x=\dfrac{sinx}{cosx}\Longrightarrow tan^2\ x=\dfrac{sin^2x}{cos^2x}[/tex]
Donc
[tex]1+tan^2x=1+\dfrac{sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{cos^2x+sin^2x}{cos^2x}\\\\1+tan^2x=\dfrac{1}{cos^2x}[/tex]
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.