Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonsoir,
Soit M(x ; y).
Commençons par calculer en fonction de x et de y les coordonnées des vecteurs MA, MB et MC :
[tex]\vec{MA} \left(\begin{array}{c}x_A-x_M\\y_A-y_M\end{array}\right)\\ \vec{MA} \left(\begin{array}{c}2-x\\-1-y\end{array}\right)\\ \vec{MB} \left(\begin{array}{c}3-x\\4-y\end{array}\right)\\ \vec{MC} \left(\begin{array}{c}-5-x\\2-y\end{array}\right)\\[/tex]
Les coordonnées du vecteur MA+MB+MC s'obtiennent en additionnant les coordonnées de ces vecteurs ; on appelle v le vecteur ainsi obtenu :
[tex]\vec v\left(\begin{array}{c} 2-x+3-x-5-x\\-1-y+4-y+2-y\end{array}\right)\\ \vec v\left(\begin{array}{c} -3x\\5-3y\end{array}\right)[/tex]
D'où :
[tex]\begin{cases} -3x = 0\\ 5-3y = 0 \end{cases}\\ \begin{cases} x = 0 \\ y = \frac 53 \end{cases}[/tex]
Et
[tex]M \left(0 ; \frac 35\right)[/tex]
Si tu as des questions, n'hésite pas! =)
Soit M(x ; y).
Commençons par calculer en fonction de x et de y les coordonnées des vecteurs MA, MB et MC :
[tex]\vec{MA} \left(\begin{array}{c}x_A-x_M\\y_A-y_M\end{array}\right)\\ \vec{MA} \left(\begin{array}{c}2-x\\-1-y\end{array}\right)\\ \vec{MB} \left(\begin{array}{c}3-x\\4-y\end{array}\right)\\ \vec{MC} \left(\begin{array}{c}-5-x\\2-y\end{array}\right)\\[/tex]
Les coordonnées du vecteur MA+MB+MC s'obtiennent en additionnant les coordonnées de ces vecteurs ; on appelle v le vecteur ainsi obtenu :
[tex]\vec v\left(\begin{array}{c} 2-x+3-x-5-x\\-1-y+4-y+2-y\end{array}\right)\\ \vec v\left(\begin{array}{c} -3x\\5-3y\end{array}\right)[/tex]
D'où :
[tex]\begin{cases} -3x = 0\\ 5-3y = 0 \end{cases}\\ \begin{cases} x = 0 \\ y = \frac 53 \end{cases}[/tex]
Et
[tex]M \left(0 ; \frac 35\right)[/tex]
Si tu as des questions, n'hésite pas! =)
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.