Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Exercice 1èreS, application de dérivée.
"La fonction f est définie sur R par f(x)=x²-2x. 
Soit C la représentation graphique de f dans un repère.
1)Montrer que C possède une unique tangente de coefficient directeur 2.
2)Indiquer les coordonnées du point de contact et l'équation de cette tangente."
Je n'arrive pas à résoudre cet exercice, svp aidez-moi, ce serait super. 
Pour le 1 j'ai fait T: y= f'(x)(x-x)-f(x)
Mais on obtient y= -x²+2x donc après on obtient 2 si on fait 
x=2 mais j'ai rien compris comment est-ce qu'il fallait faire... La prof nous a pas encore fait le cours et sur internet je n'arrive pas à trouver des explications que je comprenne... 
Merci, bonne journée !


Sagot :

Bonjour,

1) Il faut montrer que l'équation f '(x) = 2 admet une et une seule solution.

Or f'(x) = 2x - 2

Donc
 
2x - 2 = 2
2x = 2 + 2
2x = 4
x = 4/2
x = 2.

La solution est unique.

2) Soit (a ; f(a)) le point de contact.

On vient de voir que a = 2

f(a ) = f(2) = 2² - 2*2
                   = 4 - 4
                   = 0
Le point de contact est donc le point de coordonnées (2 ; 0)

Une équation de la tangente T à la courbe au point (a ; f(a)) est de la forme :
 y = f'(a)(x - a) + f(a)

Or a = 2 ; f(a) = 0 et f '(a) = 2.

Donc T : y = 2(x - 2) + 0

T: y = 2x - 4.