Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

aidez moi s'il vous plaît ! j'ai fais la figure mais a partir de la question 2 je comprends pas !

Aidez Moi Sil Vous Plaît Jai Fais La Figure Mais A Partir De La Question 2 Je Comprends Pas class=
Aidez Moi Sil Vous Plaît Jai Fais La Figure Mais A Partir De La Question 2 Je Comprends Pas class=

Sagot :

exercice 79:
1)sachant que le point M est sur AI, celui ci peut varier entre 0 et 8cm (longeur maximale), donc x est compris dans l'intervalle [0;8]

Pour la question 3, tu commence par calculer NP en le décomposant : NP = 2 NM
D'après le théorème de Thalès :
NM / BI = AM / AI
NM = 4 (8 - x)/_
NM = 4 + 1/2x

On peut maintenant calculer NP :
NP = 2NM
NP = 8 - x

Ensuite, on exprime les deux aires en fonction de x, ce qui donne :
f(x) = (AI*BP)/2 + (MI*BC)/2
f(x) = [(8-x)(8-x)]/2 + [8x]/2
f(x) = [64 - 16x + x²]/2 + 4x
f(x) = 32 - 8x + 1/2 x² + 4x
f(x) = 32 - 4x + 1/2x²


Pour les questions 4a) et b), il te suffit de t'aider de la calculatrice pour avoir une estimation du résultat : il faut que l'aire des deux triangles f(x) soit égale a 80% de l'aire de ABC (ce qui donne égale à 25.8).
Normalement tu n'auras pas de mal à trouver cela à l'aide du graphique.

Pour la 5a) tu as deux méthodes, soit tu prend l'expression donnée et tu la développe pour obtenir ton expression de f(x), soit tu factorise ton expression de f(x).
Le plus simple est de prendre l'expression donnée :
f(x)= 1/2 [(x-4)(x-4)+48]
f(x)= 1/2 [x² - 8x + 16 + 48]
f(x)= 1/2 (x² - 8x + 64)
f(x)= 1/2x² - 4x + 32

Et voilà, bon courage et Joyeux Noël!



Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.