Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour, alors c'est pour un devoir de maths voici l'énoncé :

ABCD est un carré. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On a également tracé un quart de cercle de centre B passant par A.

a) Montrer que l'aire de la surface blanche intérieure au secteur DEF est égale à l'aire de la surface grisée.

b) L'aire de la surface grisée est-elle plus grande ou plus petite que les trois quarts de l'aire du carré ABCD ?  

On note x la longuer DC !

Merci d'avance



Sagot :

a) Écris l'air de la surface blanche intérieur au secteur DEF et l'aire de la surface délimité par trait grisé
en fonction de BC puis en déduire qu'ils sont égaux.

a) Soit S l'air de la surface blanche intérieur au secteur DEF et A l'aire de la surface délimité par les trait grisé:

S = BD² - AB² = (BD² - AB²) = ((AB2)²-AB²) = (2AB² - AB²) = AB² = A

b) On veut comparer AB² et (3/4)AB² donc il suffit de comparer et 3/4 à l'aide de la valeur approchée.) Il suffit là de comparer et 3/4.


Donc il faut comparer AB²/4 et 3/4 AB² et puisque 3 on trouve que

l'aire délimité par les trait grisé est supérieur a l'autre surface.



Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.