Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Pour (x²+x-6)(x+1)<0:
x²+x-6
début en : (x+1/2)² = x² + x + 1/4
x²+x-6 = (x+1/2)² - 1/4 - 6
= (x+1/2)² - 1/4 - 24/4
= (x+1/2)² - 25/4
= (x+1/2)² - (5/2)²
= (x+1/2-5/2)(x+1/2+5/2)
= (x-2)(x+3)
(x²+x-6)(x+1)<0
devient donc :
(x-2)(x+3)(x+1) < 0
risque = 0 pour :
x = 2 ou x = -3 ou x = -1
puis tableau de variation :
x: -oo -3 -1 2 +oo
(x-2) - - - - -| +
(x+3) - | + + + + +
(x+1) - - - | + + +
f(x) + | - | + | -
pas forcément très lisible :(
f(x) < 0 pour x appartenant à l'ensemble ]-oo;-3[ U ]-1;2[
et pour (2-x)(x²+3x-4)<0 :
x²+3x-4
début en : (x+3/2)² = x² + 3x + 9/4
x²+3x-4
= (x+3/2)² - 9/4 - 4
= (x+3/2)² - 9/4 - 16/4
= (x+3/2)² - 25/4
= (x+3/2)² - (5/2)²
= (x+3/2-5/2)(x+3/2+5/2)
= (x-1)(x+4)
(2-x)(x²+3x-4)<0
devient donc :
(2-x)(x-1)(x+4) < 0
risque = 0 pour :
x = 2 ou x = 1 ou x = -4
puis tableau de variation :
x: -oo -4 1 2 +oo
(2-x) + + + + + | -
(x-1) - - - | + + +
(x+4) - | + + + + +
f(x) + | - | + | -
pas forcément très lisible (à vérifier quand même par rapport à ton cours)
f(x) < 0 pour x appartenant à l'ensemble ]-4;1[ U ]2;+oo[
En espérant t'avoir aidé.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.