Sagot :
Bonsoir,
1°) A(0 ; 1) et M(x ; x-4)
[tex]AM=\sqrt{(x_M-x_A)^2+(y_M-x_y)^2}\\\\AM=\sqrt{(x-0)^2+[(x-4)-1]^2}\\\\AM=\sqrt{x^2+(x-5)^2}\\\\AM=\sqrt{x^2+x^2-10x+25}\\\\AM=\sqrt{2x^2-10x+25}[/tex]
2°) a) [tex]f(x) \in R \Longleftrightarrow 2x^2-10x+25\ge0\\\\\Delta=(-10)^2-4\times2\times25\\\\\Delta=100-200\\\\\Delta=-100<0[/tex]
Donc 2x² - 10x + 25 est toujours du signe du coefficient de x² pour tout x réel,
soit 2x² - 10x + 25 > 0 pour tout x réel.
Par conséquent f(x) existe quel que soit le nombre x réel.
b) u(x) = 2x² - 10x + 25
La fonction u admet un minimum si x = [-b/(2a)] = -(-10)/(2*2) = 10/4 = 5/2 = 2,5.
Ce minimum vaut u(2,5) = 2*(2,5)² - 10*2,5 + 25 = 12,5 - 25 + 25 = 12,5.
[tex]\begin{array}{|c|ccccc|}x&-\infty&&\dfrac{5}{2},5&&+\infty \\ u(x)=2x^2-10x+25&&\searrow&\dfrac{25}{2}=12,5&\nearrow&\\ \end{array}[/tex]
Par conséquent u est décroissante sur ]-inf ; 2.5] et est croissante sur [2.5 ; +inf[
c) La fonction racine carré étant croissante sur [0 ; +inf[, les variations de f sont les mêmes que celles de x,
soit f est décroissante sur ]-inf ; 2.5] et est croissante sur [2.5 ; +inf[
d) La valeur minimale de AM est égale à [tex]\sqrt{\dfrac{25}{2}}=\dfrac{5}{\sqrt{2}}=\dfrac{5\sqrt{2}}{2}\approx 3,5[/tex]
1°) A(0 ; 1) et M(x ; x-4)
[tex]AM=\sqrt{(x_M-x_A)^2+(y_M-x_y)^2}\\\\AM=\sqrt{(x-0)^2+[(x-4)-1]^2}\\\\AM=\sqrt{x^2+(x-5)^2}\\\\AM=\sqrt{x^2+x^2-10x+25}\\\\AM=\sqrt{2x^2-10x+25}[/tex]
2°) a) [tex]f(x) \in R \Longleftrightarrow 2x^2-10x+25\ge0\\\\\Delta=(-10)^2-4\times2\times25\\\\\Delta=100-200\\\\\Delta=-100<0[/tex]
Donc 2x² - 10x + 25 est toujours du signe du coefficient de x² pour tout x réel,
soit 2x² - 10x + 25 > 0 pour tout x réel.
Par conséquent f(x) existe quel que soit le nombre x réel.
b) u(x) = 2x² - 10x + 25
La fonction u admet un minimum si x = [-b/(2a)] = -(-10)/(2*2) = 10/4 = 5/2 = 2,5.
Ce minimum vaut u(2,5) = 2*(2,5)² - 10*2,5 + 25 = 12,5 - 25 + 25 = 12,5.
[tex]\begin{array}{|c|ccccc|}x&-\infty&&\dfrac{5}{2},5&&+\infty \\ u(x)=2x^2-10x+25&&\searrow&\dfrac{25}{2}=12,5&\nearrow&\\ \end{array}[/tex]
Par conséquent u est décroissante sur ]-inf ; 2.5] et est croissante sur [2.5 ; +inf[
c) La fonction racine carré étant croissante sur [0 ; +inf[, les variations de f sont les mêmes que celles de x,
soit f est décroissante sur ]-inf ; 2.5] et est croissante sur [2.5 ; +inf[
d) La valeur minimale de AM est égale à [tex]\sqrt{\dfrac{25}{2}}=\dfrac{5}{\sqrt{2}}=\dfrac{5\sqrt{2}}{2}\approx 3,5[/tex]
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.