Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonsoir,
1) a) Coefficient directeur de la droite (BC) :
[tex]\dfrac{y_C-y_B}{x_C-x_A}=\dfrac{1-0}{0-1}=-1[/tex]
Coefficient directeur de RQ :
[tex]\dfrac{y_Q-y_R}{x_Q-x_R}=\dfrac{a-0}{0-(-1)}=\dfrac{a}{1}=a[/tex]
Puisque a est différent de -1, les droites sont sécantes.
b) Résoudre le système constitué par les équations des deux droites (BC) et (QR).
Comme nous avons trouvé les coefficient directeurs des deux droites et que les ordonnées à l'origine sont connues, nous avons :
(BC) : y = -x + 1
(PQ) : y = ax + a.
ax + a = -x + 1
x + ax = 1 - a
(1 + a)x = 1 -a.
[tex]x=\dfrac{1-a}{1+a}[/tex]
[tex]y=-x+1=-\dfrac{1-a}{1+a}+1=\dfrac{-1+a}{1+a}+1=\dfrac{-1+a}{1+a}+\dfrac{1+a}{1+a}=\dfrac{2a}{1+a}[/tex]
D'où [tex]P:(\dfrac{1-a}{1+a};\dfrac{2a}{1+a})[/tex]
2°) [tex]\vec{PN}=\vec{CA}\\\\(x_N - \dfrac{1-a}{1+a};y_N - \dfrac{2a}{1+a})=(0-0,0-1)\\\\(x_N - \dfrac{1-a}{1+a};y_N - \dfrac{2a}{1+a})=(0,-1)\\\\x_N - \dfrac{1-a}{1+a}+0\Longrightarrow x_N = \dfrac{1-a}{1+a}\\\\y_N - \dfrac{2a}{1+a}=-1\Longrightarrow y_N=-1+\dfrac{2a}{1+a}\Longrightarrow y_N=\dfrac{-1-a+2a}{1+a}[/tex]
[tex]\Longrightarrow y_N=\dfrac{a-1}{1+a}[/tex]
D'où [tex]N:(\dfrac{1-a}{1+a};\dfrac{a-1}{1+a})[/tex]
[tex]\vec{BM}=\vec{CQ}\\\\(x_M-1;y_M-0)=(0-0;a-1)\\\\(x_M-1;y_M)=(0;a-1)\\\\x_M-1=0\Longrightarrow x_M=1\\\\y_M=a-1[/tex]
D'où [tex]M:(1;a-1)[/tex]
3) [tex]\vec{RN}=(\dfrac{2}{1+a};\dfrac{a-1}{1+a})\\\\\vec{MR}=(-2;1-a)[/tex]
Vérifions la colinéarité des deux vecteurs.
[tex]-2\times\dfrac{a-1}{1+a}-(1-a)\times\dfrac{2}{1+a}=0\\\\\dfrac{-2a+2}{1+a}-\dfrac{2-2a}{1+a}=0\\\\\dfrac{-2a+2-2+2a}{1+a}=0\\\\0=0[/tex]
Les points R,M et N sont alignés.
1) a) Coefficient directeur de la droite (BC) :
[tex]\dfrac{y_C-y_B}{x_C-x_A}=\dfrac{1-0}{0-1}=-1[/tex]
Coefficient directeur de RQ :
[tex]\dfrac{y_Q-y_R}{x_Q-x_R}=\dfrac{a-0}{0-(-1)}=\dfrac{a}{1}=a[/tex]
Puisque a est différent de -1, les droites sont sécantes.
b) Résoudre le système constitué par les équations des deux droites (BC) et (QR).
Comme nous avons trouvé les coefficient directeurs des deux droites et que les ordonnées à l'origine sont connues, nous avons :
(BC) : y = -x + 1
(PQ) : y = ax + a.
ax + a = -x + 1
x + ax = 1 - a
(1 + a)x = 1 -a.
[tex]x=\dfrac{1-a}{1+a}[/tex]
[tex]y=-x+1=-\dfrac{1-a}{1+a}+1=\dfrac{-1+a}{1+a}+1=\dfrac{-1+a}{1+a}+\dfrac{1+a}{1+a}=\dfrac{2a}{1+a}[/tex]
D'où [tex]P:(\dfrac{1-a}{1+a};\dfrac{2a}{1+a})[/tex]
2°) [tex]\vec{PN}=\vec{CA}\\\\(x_N - \dfrac{1-a}{1+a};y_N - \dfrac{2a}{1+a})=(0-0,0-1)\\\\(x_N - \dfrac{1-a}{1+a};y_N - \dfrac{2a}{1+a})=(0,-1)\\\\x_N - \dfrac{1-a}{1+a}+0\Longrightarrow x_N = \dfrac{1-a}{1+a}\\\\y_N - \dfrac{2a}{1+a}=-1\Longrightarrow y_N=-1+\dfrac{2a}{1+a}\Longrightarrow y_N=\dfrac{-1-a+2a}{1+a}[/tex]
[tex]\Longrightarrow y_N=\dfrac{a-1}{1+a}[/tex]
D'où [tex]N:(\dfrac{1-a}{1+a};\dfrac{a-1}{1+a})[/tex]
[tex]\vec{BM}=\vec{CQ}\\\\(x_M-1;y_M-0)=(0-0;a-1)\\\\(x_M-1;y_M)=(0;a-1)\\\\x_M-1=0\Longrightarrow x_M=1\\\\y_M=a-1[/tex]
D'où [tex]M:(1;a-1)[/tex]
3) [tex]\vec{RN}=(\dfrac{2}{1+a};\dfrac{a-1}{1+a})\\\\\vec{MR}=(-2;1-a)[/tex]
Vérifions la colinéarité des deux vecteurs.
[tex]-2\times\dfrac{a-1}{1+a}-(1-a)\times\dfrac{2}{1+a}=0\\\\\dfrac{-2a+2}{1+a}-\dfrac{2-2a}{1+a}=0\\\\\dfrac{-2a+2-2+2a}{1+a}=0\\\\0=0[/tex]
Les points R,M et N sont alignés.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.