Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonsoir,
1) Si x= 0, alors les points A, M et I sont confondus.
Le triangle AMI est réduit à un point et le triangle DIC est la moitié du carré dont l'aire est 4 * 4 = 16 cm².
Donc A(0) = 0 + 1/2 * 16 = 8 cm²
Si x = 4, alors les points D, M et I sont confondus.
Les triangles AMI et DIC correspondent chacun à un quart du carré.
Donc A(4) = 2 * (1/4) * 16 = 8 cm².
2) Les triangles AIM et CID sont semblables (opposés par le sommet avec (AM) parallèle à (DC)).
Les hauteurs correspondantes de ces triangles sont dans le même rapport que les côtés correspondants.
La hauteur issue de I dans le triangle CID mesure 4 - h.
Donc :
[tex]\dfrac{h}{4-h}=\dfrac{AM}{DC}\\\\\dfrac{h}{4-h}=\dfrac{x}{4}[/tex]
On en déduit que :
[tex]\dfrac{h}{4-h}=\dfrac{x}{4}\\\\4h=(4-h)x\\\\4h=4x-hx\\\\hx + 4h = 4x\\\\(x+4)h=4x\\\\h=\dfrac{4x}{x+4}[/tex]
3) Aire d'un triangle = (1/2) * Base * hauteur.
[tex]Aire\ du\ triangle\ AMI = \dfrac{1}{2}\times AM\times h = \dfrac{1}{2}\times x\times h\\\\= \dfrac{1}{2}\times x\times \dfrac{4x}{x+4}=\dfrac{4x^2}{2(x+4)}=\dfrac{2x^2}{x+4}[/tex]
[tex]Aire\ du\ triangle\ DIC = \dfrac{1}{2}\times DC\times (4-h) = \dfrac{1}{2}\times 4\times (4-h)\\\\= 2(4-h)=2(4-\dfrac{4x}{x+4})=2(\dfrac{4(x+4)}{x+4}-\dfrac{4x}{x+4})[/tex]
[tex]=2(\dfrac{4(x+4)-4x}{x+4})=2(\dfrac{4x+16-4x}{x+4})=2(\dfrac{16}{x+4})=\dfrac{32}{x+4}[/tex]
D'où :
[tex]A(x)=\dfrac{2x^2}{x+4}+\dfrac{32}{x+4}\\\\A(x)=\dfrac{2x^2+32}{x+4}\\\\A(x)=\dfrac{2(x^2+16)}{x+4}[/tex]
4) Etudions le signe de la dérivée A '(x).
[tex]A'(x)=2\times\dfrac{(x^2+16)'(x+4)-(x+4)'(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x\times(x+4)-1\times(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x(x+4)-(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x^2+8x-x^2-16}{(x+4)^2}\\\\A'(x)=2\times\dfrac{x^2+8x-16}{(x+4)^2}[/tex]
racines de x² + 8x - 16 :
[tex]\Delta=(-8)^2-4\times1\times(-16)=64+64=128\\\\x_1=\dfrac{-8-\sqrt{128}}{2}\approx-9,7\\\\x_2=\dfrac{-8+\sqrt{128}}{2}\approx1,7[/tex]
racine de x + 4 : -4
[tex]\begin{array}{|c|ccccccccc||}x&-\infty&&-9,7&&-4&&1,7&&+\infty\\ 2&&+&+&+&+&+&+&+&\\ x^2+8x-16&&+&0&-&-&-&0&+&\\ x+4&&-&-&-&0&+&+&+&\\ A'(x)&&-&0&+&|&-&0&+& \\\end{array}[/tex]
Or x ∈ [0 ; 4]
Donc
[tex]\begin{array}{|c|ccccc||}x&0&&1,7&&4\\ A'(x)&&-&0&+& \\ A'(x)&&\searrow&6,6&\nearrow& \\\end{array}[/tex]
Par conséquent A est décroissante sur [0 ; 1,7] et est croissante sur [1,7 ; 4]
L'aire totale des deux triangles sera minimale si AM ≈ 1,7
1) Si x= 0, alors les points A, M et I sont confondus.
Le triangle AMI est réduit à un point et le triangle DIC est la moitié du carré dont l'aire est 4 * 4 = 16 cm².
Donc A(0) = 0 + 1/2 * 16 = 8 cm²
Si x = 4, alors les points D, M et I sont confondus.
Les triangles AMI et DIC correspondent chacun à un quart du carré.
Donc A(4) = 2 * (1/4) * 16 = 8 cm².
2) Les triangles AIM et CID sont semblables (opposés par le sommet avec (AM) parallèle à (DC)).
Les hauteurs correspondantes de ces triangles sont dans le même rapport que les côtés correspondants.
La hauteur issue de I dans le triangle CID mesure 4 - h.
Donc :
[tex]\dfrac{h}{4-h}=\dfrac{AM}{DC}\\\\\dfrac{h}{4-h}=\dfrac{x}{4}[/tex]
On en déduit que :
[tex]\dfrac{h}{4-h}=\dfrac{x}{4}\\\\4h=(4-h)x\\\\4h=4x-hx\\\\hx + 4h = 4x\\\\(x+4)h=4x\\\\h=\dfrac{4x}{x+4}[/tex]
3) Aire d'un triangle = (1/2) * Base * hauteur.
[tex]Aire\ du\ triangle\ AMI = \dfrac{1}{2}\times AM\times h = \dfrac{1}{2}\times x\times h\\\\= \dfrac{1}{2}\times x\times \dfrac{4x}{x+4}=\dfrac{4x^2}{2(x+4)}=\dfrac{2x^2}{x+4}[/tex]
[tex]Aire\ du\ triangle\ DIC = \dfrac{1}{2}\times DC\times (4-h) = \dfrac{1}{2}\times 4\times (4-h)\\\\= 2(4-h)=2(4-\dfrac{4x}{x+4})=2(\dfrac{4(x+4)}{x+4}-\dfrac{4x}{x+4})[/tex]
[tex]=2(\dfrac{4(x+4)-4x}{x+4})=2(\dfrac{4x+16-4x}{x+4})=2(\dfrac{16}{x+4})=\dfrac{32}{x+4}[/tex]
D'où :
[tex]A(x)=\dfrac{2x^2}{x+4}+\dfrac{32}{x+4}\\\\A(x)=\dfrac{2x^2+32}{x+4}\\\\A(x)=\dfrac{2(x^2+16)}{x+4}[/tex]
4) Etudions le signe de la dérivée A '(x).
[tex]A'(x)=2\times\dfrac{(x^2+16)'(x+4)-(x+4)'(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x\times(x+4)-1\times(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x(x+4)-(x^2+16)}{(x+4)^2}\\\\A'(x)=2\times\dfrac{2x^2+8x-x^2-16}{(x+4)^2}\\\\A'(x)=2\times\dfrac{x^2+8x-16}{(x+4)^2}[/tex]
racines de x² + 8x - 16 :
[tex]\Delta=(-8)^2-4\times1\times(-16)=64+64=128\\\\x_1=\dfrac{-8-\sqrt{128}}{2}\approx-9,7\\\\x_2=\dfrac{-8+\sqrt{128}}{2}\approx1,7[/tex]
racine de x + 4 : -4
[tex]\begin{array}{|c|ccccccccc||}x&-\infty&&-9,7&&-4&&1,7&&+\infty\\ 2&&+&+&+&+&+&+&+&\\ x^2+8x-16&&+&0&-&-&-&0&+&\\ x+4&&-&-&-&0&+&+&+&\\ A'(x)&&-&0&+&|&-&0&+& \\\end{array}[/tex]
Or x ∈ [0 ; 4]
Donc
[tex]\begin{array}{|c|ccccc||}x&0&&1,7&&4\\ A'(x)&&-&0&+& \\ A'(x)&&\searrow&6,6&\nearrow& \\\end{array}[/tex]
Par conséquent A est décroissante sur [0 ; 1,7] et est croissante sur [1,7 ; 4]
L'aire totale des deux triangles sera minimale si AM ≈ 1,7
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.