Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Bonsoir,
Ce problème est intéressant
Comme la droite passe par le point (1,1)
on peut écrire a*1 +b=1
donc b=1-a
Il faut donc définir le curseur a puis entrer dans la ligne de saisie y=a*x+1-a et on obtient la droite.
Ensuite on construit le reste et on obtient la courbe d'une fonction homographique du type (ax+b)/cx+d)
2 a)
Une équation de la droite D est y=ax+1-a
b) au point d'intersection de D avec l'axe des abscisse on peut écrire ax+1-a=0
donc x=(a-1)/a
au point d'intersection avec l'axe des ordonnées on peut écrire y=0a+1-a=1-a
donc M((a-1)/a; (1-a))
c) x=(a-1)/a donc a=-1/(x-1)
y=1-a=1+1/(x-1)=x/(x-1)
On rentre la fonction et on voit que ça recouvre la trace de M
Je te mets en fichier joint une photo de la construction car on ne peut pas attacher les fichier géogébra. Si tu en as besoin, donne moi une adresse email et je te l'envoie.
Ce problème est intéressant
Comme la droite passe par le point (1,1)
on peut écrire a*1 +b=1
donc b=1-a
Il faut donc définir le curseur a puis entrer dans la ligne de saisie y=a*x+1-a et on obtient la droite.
Ensuite on construit le reste et on obtient la courbe d'une fonction homographique du type (ax+b)/cx+d)
2 a)
Une équation de la droite D est y=ax+1-a
b) au point d'intersection de D avec l'axe des abscisse on peut écrire ax+1-a=0
donc x=(a-1)/a
au point d'intersection avec l'axe des ordonnées on peut écrire y=0a+1-a=1-a
donc M((a-1)/a; (1-a))
c) x=(a-1)/a donc a=-1/(x-1)
y=1-a=1+1/(x-1)=x/(x-1)
On rentre la fonction et on voit que ça recouvre la trace de M
Je te mets en fichier joint une photo de la construction car on ne peut pas attacher les fichier géogébra. Si tu en as besoin, donne moi une adresse email et je te l'envoie.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.