Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Exercice
1 : 
ABC
est un triangle rectangle en A de sens direct tel que (vect BA;
vectBC)=-pi /6 et le triangle ACD est équilatéral de sens direct.
Donner en justifiant, la mesure principale des angles orienté : 

1/
(vect AD;vect AB)

2/
(vect DC;vect AC)

3/
(vect DC;vect BA)

4/
(vect CA;vect CB)




Exercice
2 :
C
est le cercle trigonométrique associé à un repere orthonormé
direct (o,I,J)du plan, M est le point de C tel que (vect OI;vect OM)
= pi/4 [2pi]

1/
Quelles sont les coordonnées de M dans le repère (O;I;J) ?

2/
Calculer la distance IM

3/
a. Démontrer que IM=2*sin( pi/8 )

b.
En déduire la valeur exacte de sin( pi/8 )

4/
Calculer la valeur exacte de cos(pi/8)

5/
Déduire des questions précédentes les lignes trigonométrique de :
7pi/8
; 9pi/8 ; 5pi/8 et 3pi/8


Bonjour, voici mes réponses


Exercice
1:

1/
(vect AD;vect AC)=(vect AD:vect AC)+ (vect AC;vect AB)= pi/3 + pi/2 =
2pi/6 + 3pi/6 =5pi/6 La
mesure principale de (vect AD;vect AC) est 5pi/6

2/
(vect DC; vect AC)=(vect DC;vect -CA)=(vect DC;vect CA)+pi= pi/3 +
pi=4pi/3.

Mais
4pi/3 n'est pas une mesure principale.
Donc
4pi/3=6pi/3-2pi/3=2pi-2pi/3 
La
mesure principale de (vect DC;vect AC) est -2pi/3

3/
(vect DC;vect BA) JE ne trouve pas comment faire 

4/
(vect CA;vect CB) = pi/3




Exercice 2 :


1/ Les coordonnées de M sont : (racine
de 2/2; racine de 2/2).

 2/ Les coordonnées de I(1;0) Donc
IM=racine de [(2racine2/2-1)²+(2racine2/2-0)²]
=racine de[2-racine de2]



Merci de votre aide


Sagot :

Ex 1 :
1/
(vect AD;vect AB) =pi/3+pi/2=5pi/6

2/
(vect DC;vect AC)=
(vect CD;vect CA)=pi/3

3/
(vect DC;vect BA)=pi-pi/6=5pi/6

4/
(vect CA;vect CB)=pi/2-pi/6=pi/3




Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.