Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Bonjour,
[tex]1)\ C(x)=x^2+50x+96\\\\C(15)=15^2+50\times15+96\\\\C(15)=225+750+96\\\\C(15)=1071[/tex]
Le coût horaire de fabrication de 15 appareils est égal à 1071 €.
Le prix de vente d'un appareil est 100 €.
Le prix de vente de 15 appareils est 15 * 100 = 1500 €.
Le bénéfice est égal au prix de vente diminué du coût de fabrication.
Le bénéfice pour la vente de 15 appareils est égal à 1500 - 1071 = 429 €
2) Bénéfice = Pris de vente - Coût de fabrication.
[tex]B(x) = 100x - (x^2+50x+96)\\\\B(x) = 100x - x^2-50x-96\\\\B(x)=-x^2+50x-96[/tex]
3) [tex]-x^2+50x-96\ge0[/tex]
Tableau de signes du trinôme.
Racines du trinôme :
[tex]\Delta=50^2-4\times(-1)\times(-96)\\\\\Delta=2500-384\\\\\Delta=2116\\\\x_1=\dfrac{-50-\sqrt{2116}}{2\times(-1)}=\dfrac{-50-46}{-2}=48\\\\x_2=\dfrac{-50+\sqrt{2116}}{2\times(-1)}=\dfrac{-50+46}{-2}=2[/tex]
[tex]\begin{array}{|c|ccccccc|}x&-\infty&&2}&&48&&+\infty \\ -x^2+50x-96&&-&0&+&0&-&\\ \end{array}[/tex]
Le bénéfice sera positif si 2 ≤ x ≤ 48.
Or les contraintes du problème s'expriment par 5 ≤ x ≤ 40
Donc le bénéfice sera positif si 5 ≤ x ≤ 40.
Comme la production est entre 5 et 40 appareils électro-ménagers par heure, l'entreprise aura donc toujours un bénéfice positif.
4) B(x) = -(x - 25)² + 529
B(x) = -(x² - 50x + 625) + 529
B(x) = -x² + 50x - 625 + 529
B(x) = -x² + 50x - 96.
5) B(x) = -(x - 25)² + 529
B(x) - 529 = -(x - 25)²
Or pour tout x réel, nous avons (x - 25)² ≥ 0 (car un carré n'est jamais négatif)
Multiplions les deux membres par (-1) ==> le sens de l'inégalité change.
(-1) * (x - 25)² ≤ 0
-(x - 25)² ≤ 0
Donc B(x) - 529 ≤ 0
B(x) ≤ 529.
B(x) étant inférieur ou égal à 529, B(x) admet un maximum égal à 529.
5) B(x) = -(x - 25)² + 529
B(25) = -(25 - 25)² + 529
B(25) = 0 + 529
B(25) = 529.
Donc B(x) = 529 si x = 25.
7) Par conséquent le bénéfice maximal vaudra 529 € et il sera atteint pour une production égale à 25 appareils par heure.
[tex]1)\ C(x)=x^2+50x+96\\\\C(15)=15^2+50\times15+96\\\\C(15)=225+750+96\\\\C(15)=1071[/tex]
Le coût horaire de fabrication de 15 appareils est égal à 1071 €.
Le prix de vente d'un appareil est 100 €.
Le prix de vente de 15 appareils est 15 * 100 = 1500 €.
Le bénéfice est égal au prix de vente diminué du coût de fabrication.
Le bénéfice pour la vente de 15 appareils est égal à 1500 - 1071 = 429 €
2) Bénéfice = Pris de vente - Coût de fabrication.
[tex]B(x) = 100x - (x^2+50x+96)\\\\B(x) = 100x - x^2-50x-96\\\\B(x)=-x^2+50x-96[/tex]
3) [tex]-x^2+50x-96\ge0[/tex]
Tableau de signes du trinôme.
Racines du trinôme :
[tex]\Delta=50^2-4\times(-1)\times(-96)\\\\\Delta=2500-384\\\\\Delta=2116\\\\x_1=\dfrac{-50-\sqrt{2116}}{2\times(-1)}=\dfrac{-50-46}{-2}=48\\\\x_2=\dfrac{-50+\sqrt{2116}}{2\times(-1)}=\dfrac{-50+46}{-2}=2[/tex]
[tex]\begin{array}{|c|ccccccc|}x&-\infty&&2}&&48&&+\infty \\ -x^2+50x-96&&-&0&+&0&-&\\ \end{array}[/tex]
Le bénéfice sera positif si 2 ≤ x ≤ 48.
Or les contraintes du problème s'expriment par 5 ≤ x ≤ 40
Donc le bénéfice sera positif si 5 ≤ x ≤ 40.
Comme la production est entre 5 et 40 appareils électro-ménagers par heure, l'entreprise aura donc toujours un bénéfice positif.
4) B(x) = -(x - 25)² + 529
B(x) = -(x² - 50x + 625) + 529
B(x) = -x² + 50x - 625 + 529
B(x) = -x² + 50x - 96.
5) B(x) = -(x - 25)² + 529
B(x) - 529 = -(x - 25)²
Or pour tout x réel, nous avons (x - 25)² ≥ 0 (car un carré n'est jamais négatif)
Multiplions les deux membres par (-1) ==> le sens de l'inégalité change.
(-1) * (x - 25)² ≤ 0
-(x - 25)² ≤ 0
Donc B(x) - 529 ≤ 0
B(x) ≤ 529.
B(x) étant inférieur ou égal à 529, B(x) admet un maximum égal à 529.
5) B(x) = -(x - 25)² + 529
B(25) = -(25 - 25)² + 529
B(25) = 0 + 529
B(25) = 529.
Donc B(x) = 529 si x = 25.
7) Par conséquent le bénéfice maximal vaudra 529 € et il sera atteint pour une production égale à 25 appareils par heure.
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.