Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Le nombre  ɸ étudié dans cette exercice s'appelle le nombre d'or.

1) Montrer que le nombre  ɸ =1+√5/2 est solution de l'équation x² = x+1.

2) En vous servant de la question 1), calculer la valeur exacte de b = √1+√1+1+√5/2.

Sagot :

Bonjour,

1) Il suffit de remplacer x par la valeur de [tex]\Phi[/tex] dans l'équation et de montrer que l'égalité est vraie.
Cela revient à montrer que  [tex]\Phi^2=\Phi+1[/tex]

[tex]\Phi^2=(\dfrac{1+\sqrt{5}}{2})^2=\dfrac{(1+\sqrt{5})^2}{4}\\\\=\dfrac{1+2\sqrt{5}+5}{4}=\dfrac{6+2\sqrt{5}}{4}\\\\=\dfrac{2(3+\sqrt{5})}{4}=\dfrac{3+\sqrt{5}}{2}[/tex]

[tex]\Phi+1=\dfrac{1+\sqrt{5}}{2}+1=\dfrac{1+\sqrt{5}}{2}+\dfrac{2}{2}\\\\=\dfrac{1+\sqrt{5}+2}{2}=\dfrac{3+\sqrt{5}}{2}[/tex]

Par conséquent l'égalité   [tex]\Phi^2=\Phi+1[/tex] est vraie.

[tex]2)\ b=\sqrt{1+\sqrt{1+\dfrac{1+\sqrt{5}}{2}}}=\sqrt{1+\sqrt{1+\Phi}}\\\\\\=\sqrt{1+\sqrt{\Phi^2}}=\sqrt{1+\Phi}=\sqrt{\Phi^2}=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]

Donc  [tex]b=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.