Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour,
1) Il suffit de remplacer x par la valeur de [tex]\Phi[/tex] dans l'équation et de montrer que l'égalité est vraie.
Cela revient à montrer que [tex]\Phi^2=\Phi+1[/tex]
[tex]\Phi^2=(\dfrac{1+\sqrt{5}}{2})^2=\dfrac{(1+\sqrt{5})^2}{4}\\\\=\dfrac{1+2\sqrt{5}+5}{4}=\dfrac{6+2\sqrt{5}}{4}\\\\=\dfrac{2(3+\sqrt{5})}{4}=\dfrac{3+\sqrt{5}}{2}[/tex]
[tex]\Phi+1=\dfrac{1+\sqrt{5}}{2}+1=\dfrac{1+\sqrt{5}}{2}+\dfrac{2}{2}\\\\=\dfrac{1+\sqrt{5}+2}{2}=\dfrac{3+\sqrt{5}}{2}[/tex]
Par conséquent l'égalité [tex]\Phi^2=\Phi+1[/tex] est vraie.
[tex]2)\ b=\sqrt{1+\sqrt{1+\dfrac{1+\sqrt{5}}{2}}}=\sqrt{1+\sqrt{1+\Phi}}\\\\\\=\sqrt{1+\sqrt{\Phi^2}}=\sqrt{1+\Phi}=\sqrt{\Phi^2}=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Donc [tex]b=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
1) Il suffit de remplacer x par la valeur de [tex]\Phi[/tex] dans l'équation et de montrer que l'égalité est vraie.
Cela revient à montrer que [tex]\Phi^2=\Phi+1[/tex]
[tex]\Phi^2=(\dfrac{1+\sqrt{5}}{2})^2=\dfrac{(1+\sqrt{5})^2}{4}\\\\=\dfrac{1+2\sqrt{5}+5}{4}=\dfrac{6+2\sqrt{5}}{4}\\\\=\dfrac{2(3+\sqrt{5})}{4}=\dfrac{3+\sqrt{5}}{2}[/tex]
[tex]\Phi+1=\dfrac{1+\sqrt{5}}{2}+1=\dfrac{1+\sqrt{5}}{2}+\dfrac{2}{2}\\\\=\dfrac{1+\sqrt{5}+2}{2}=\dfrac{3+\sqrt{5}}{2}[/tex]
Par conséquent l'égalité [tex]\Phi^2=\Phi+1[/tex] est vraie.
[tex]2)\ b=\sqrt{1+\sqrt{1+\dfrac{1+\sqrt{5}}{2}}}=\sqrt{1+\sqrt{1+\Phi}}\\\\\\=\sqrt{1+\sqrt{\Phi^2}}=\sqrt{1+\Phi}=\sqrt{\Phi^2}=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Donc [tex]b=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.