Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Bonjour,
1) Il suffit de remplacer x par la valeur de [tex]\Phi[/tex] dans l'équation et de montrer que l'égalité est vraie.
Cela revient à montrer que [tex]\Phi^2=\Phi +1[/tex]
[tex]\Phi^2=(\dfrac{1+\sqrt{5}}{2})^2=\dfrac{(1+\sqrt{5})^2}{4}\\\\=\dfrac{1+2\sqrt{5}+5}{4}=\dfrac{6+2\sqrt{5}}{4}\\\\=\dfrac{2(3+\sqrt{5})}{4}=\dfrac{3+\sqrt{5}}{2}[/tex]
[tex]\Phi+1=\dfrac{1+\sqrt{5}}{2}+1=\dfrac{1+\sqrt{5}}{2}+\dfrac{2}{2}\\\\=\dfrac{1+\sqrt{5}+2}{2}=\dfrac{3+\sqrt{5}}{2}[/tex]
Par conséquent l'égalité [tex]\Phi^2=\Phi +1[/tex] est vraie.
[tex]2)\ b=\sqrt{1+\sqrt{1+\dfrac{1+\sqrt{5}}{2}}}=\sqrt{1+\sqrt{1+\Phi}}\\\\\\=\sqrt{1+\sqrt{\Phi^2}}=\sqrt{1+\Phi}=\sqrt{\Phi^2}=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Donc,
[tex]b=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
1) Il suffit de remplacer x par la valeur de [tex]\Phi[/tex] dans l'équation et de montrer que l'égalité est vraie.
Cela revient à montrer que [tex]\Phi^2=\Phi +1[/tex]
[tex]\Phi^2=(\dfrac{1+\sqrt{5}}{2})^2=\dfrac{(1+\sqrt{5})^2}{4}\\\\=\dfrac{1+2\sqrt{5}+5}{4}=\dfrac{6+2\sqrt{5}}{4}\\\\=\dfrac{2(3+\sqrt{5})}{4}=\dfrac{3+\sqrt{5}}{2}[/tex]
[tex]\Phi+1=\dfrac{1+\sqrt{5}}{2}+1=\dfrac{1+\sqrt{5}}{2}+\dfrac{2}{2}\\\\=\dfrac{1+\sqrt{5}+2}{2}=\dfrac{3+\sqrt{5}}{2}[/tex]
Par conséquent l'égalité [tex]\Phi^2=\Phi +1[/tex] est vraie.
[tex]2)\ b=\sqrt{1+\sqrt{1+\dfrac{1+\sqrt{5}}{2}}}=\sqrt{1+\sqrt{1+\Phi}}\\\\\\=\sqrt{1+\sqrt{\Phi^2}}=\sqrt{1+\Phi}=\sqrt{\Phi^2}=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Donc,
[tex]b=\Phi=\dfrac{1+\sqrt{5}}{2}[/tex]
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.