Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir, j'ai un devoir maison de maths pour la rentrer mais le problème 
c'est que je n'y arrive pas ,j'ai chercher dans mes cahier il n'y avait pas de cours j'ai chercher sur internet rien :'( 

Voici l'énoncer: 
Le rayon du cercle (C) de centre O est égal à 3cm .[AB] est un diamètre de ce cercle . Les points C et D appartiennent au cercle et la droite (CD) est la médiatrice du rayon [OA] . La droite (OC) coupe en T la tangente au cercle (C) au point B. 

Question 
1) Montrer que (CD) et (BT) sont parallèle. 
2) Calculer, en utilisant la propriété de Thalès,la longueur OT. 
3) Démontrer que le triangle COA est équilatéral. 

Merci d'avoir lu 


Sagot :

1)
(CD) étant la médiatrice de [OA] , elle est perpendiculaire à (AB).
(BT) étant la tangente à (C) en B, elle est aussi perpendiculaire à (AB),
donc (CM) et (BT) sont parallèles

2)
La propriété de Thalès permet d'écrire : OT = OB
                                                                OC    OM
Or  OC = OB = 3 et OM = 1,5
OT = je sais plus j'ai perdu le fil

3)
C étant sur la médiatrice de [OA], on a CA = CO.
De plus, OC = OA car [OC] et [OA] sont deux rayons de (C).
Donc OC = OA = CA, et le triangle COA est équilatéral.
OT = 3
1,5   1,5

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.