Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Aide svp

Trop trop dur,..


Aide Svp Trop Trop Dur class=

Sagot :

xxx102
Bonsoir,

Commençons par démontrer que le triangle PNM est rectangle.

Le triangle PNM est inscrit dans un cercle de diamètre [NM]
Or si un triangle a un de ses côtés comme diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce côté est son hypoténuse.
Donc PNM est rectangle en P.

PNM est rectangle en P.
Or les angles aigus d'un rectangle sont complémentaires.
Donc on a :
[tex]\widehat{PNM}+\widehat{PMN} = 90\char23\\ \widehat{PNM}= 90 - \widehat{PMN} = 90-32 = 58 \char23 [/tex]

Si tu as des questions, n'hésite pas! =)
Coucou,

>>On sait que :
- Le cercle a pour diamètre les cotés du triangle PMN, autrement dit le segment [MN] est le diamètre du cercle.

>> Propriété : Si un triangle est inscrit dans un cercle qui a pour diamètre un des côtés du triangle alors ce triangle est rectangle. Ainsi, le diamètre est son hypoténuse (= son plus grand côté).

>>Donc, le triangle PMN est rectangle  en P.

Dans un triangle, la somme des côtés vaut toujours 180°.
Et, on sait que :
- l'angle P^MN (ou tout simplement l'angle M) = 32° 
- l'angle M^PN (ou tout simplement l'angle P) = 90° car le triangle est rectangle.
- P^NM (ou tout simplement l'angle N)= ?

Maintenant, calculons :
180 - (90+32) = 58°
Donc P^NM  = 58°

Voilà ;)
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.