Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Bonsoir,
1) Montrons que x/(x+1) ≤ ln(1+x), soit que ln(1+x) - x/(x+1) ≥ 0.
Posons g(x) = ln(1+x) - x/(x+1).
[tex]g'(x)=\dfrac{1}{1+x}-\dfrac{1\times(x+1)-1\times x}{(x+1)^2}\\\\g'(x)=\dfrac{1}{1+x}-\dfrac{(x+1)- x}{(x+1)^2}\\\\g'(x)=\dfrac{1}{1+x}-\dfrac{1}{(x+1)^2}\\\\g'(x)=\dfrac{1+x}{(1+x)^2}-\dfrac{1}{(x+1)^2}\\\\g'(x)=\dfrac{x}{(x+1)^2}[/tex]
[tex]\begin{array}{|c|ccccc||}x&-1&&0&&+\infty\\ x&&-&0&+&\\ (x+1)^2&&+&+&+&\\ g'(x)&&-&0&+&\\ g(x)&&\searrow&0&\nearrow& \\\end{array}[/tex]
Les variations de la fonction g montrent que pour tout x > -1, nous avons : g(x) ≥ 0, soit ln(1+x) - x/(x+1) ≥ 0.
Donc pour tout x > -1, nous avons : x/(x+1) ≤ ln(1+x)
2) Montrons que ln(1+x) ≤ x, soit que ln(1+x) - x ≤ 0
Posons h(x) = ln(1+x) - x.
[tex]h'(x)=\dfrac{1}{1+x}-1\\\\h'(x)=\dfrac{1}{1+x}-\dfrac{1+x}{1+x}\\\\h'(x)=\dfrac{1-(1+x)}{1+x}\\\\h'(x)=\dfrac{1-1-x}{1+x}\\\\h'(x)=\dfrac{-x}{1+x}[/tex]
[tex]\begin{array}{|c|ccccc||}x&-1&&0&&+\infty\\ -x&&+&0&-&\\ (1+x)&&+&+&+&\\ h'(x)&&+&0&-&\\ h(x)&&\nearrow&0&\searrow& \\\end{array}[/tex]
Les variations de la fonction h montrent que pour tout x > -1, nous avons : h(x) ≤ 0, soit ln(1+x) - x ≤ 0.
Donc pour tout x > -1, nous avons : ln(1+x) ≤ x.
1) Montrons que x/(x+1) ≤ ln(1+x), soit que ln(1+x) - x/(x+1) ≥ 0.
Posons g(x) = ln(1+x) - x/(x+1).
[tex]g'(x)=\dfrac{1}{1+x}-\dfrac{1\times(x+1)-1\times x}{(x+1)^2}\\\\g'(x)=\dfrac{1}{1+x}-\dfrac{(x+1)- x}{(x+1)^2}\\\\g'(x)=\dfrac{1}{1+x}-\dfrac{1}{(x+1)^2}\\\\g'(x)=\dfrac{1+x}{(1+x)^2}-\dfrac{1}{(x+1)^2}\\\\g'(x)=\dfrac{x}{(x+1)^2}[/tex]
[tex]\begin{array}{|c|ccccc||}x&-1&&0&&+\infty\\ x&&-&0&+&\\ (x+1)^2&&+&+&+&\\ g'(x)&&-&0&+&\\ g(x)&&\searrow&0&\nearrow& \\\end{array}[/tex]
Les variations de la fonction g montrent que pour tout x > -1, nous avons : g(x) ≥ 0, soit ln(1+x) - x/(x+1) ≥ 0.
Donc pour tout x > -1, nous avons : x/(x+1) ≤ ln(1+x)
2) Montrons que ln(1+x) ≤ x, soit que ln(1+x) - x ≤ 0
Posons h(x) = ln(1+x) - x.
[tex]h'(x)=\dfrac{1}{1+x}-1\\\\h'(x)=\dfrac{1}{1+x}-\dfrac{1+x}{1+x}\\\\h'(x)=\dfrac{1-(1+x)}{1+x}\\\\h'(x)=\dfrac{1-1-x}{1+x}\\\\h'(x)=\dfrac{-x}{1+x}[/tex]
[tex]\begin{array}{|c|ccccc||}x&-1&&0&&+\infty\\ -x&&+&0&-&\\ (1+x)&&+&+&+&\\ h'(x)&&+&0&-&\\ h(x)&&\nearrow&0&\searrow& \\\end{array}[/tex]
Les variations de la fonction h montrent que pour tout x > -1, nous avons : h(x) ≤ 0, soit ln(1+x) - x ≤ 0.
Donc pour tout x > -1, nous avons : ln(1+x) ≤ x.
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.