Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonsoir,si vous pouviez m'aider pour cet exercice ça serai vraiment super sympas.Dans l'exo on demande une figure mais vous n'avez pas besoin de la faire j'ai juste besoin des questions ;) Merci d'avance !!! C'est important car ça va être noté :)  Le premier document c'est l'énoncé et le second c'est l'exo j’espère que vous allez y arriver mieux que moi :D 
Ennonce : Monsieur Vaccari veux construire un hangar,pour cela il realise le croquis suivant (celui ci dessous) ou l'unite delongeur est le metre .
le sol  ABCD et le toit  EFGH  sont des rectangles 
le triangle IHE est rectangle en I 
Le quadrilatere iead est rectangle 
La hauteur du sol au sommet du toit est HD 
On donne AD=2,25;AB=7,5 et HD=5  
SVP aidé moi !!!! :D 


Bonsoirsi Vous Pouviez Maider Pour Cet Exercice Ça Serai Vraiment Super SympasDans Lexo On Demande Une Figure Mais Vous Navez Pas Besoin De La Faire Jai Juste B class=

Sagot :

Bonsoir,

Partie A.

1) Puisque le croquis doit être fait à l'échelle 1/100, Les longueurs données en mètres se dessineront en cm.

Ainsi, sur le croquis,
AD = 2,25 cm
AE = 2cm
HD = 5 cm.

2) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².

Or HI = HD - DI
         = 5 - DI
         = 5 - AE   (puisque dans le rectangle AEID, AE = DI)
         = 5 - 2     (puisque dans cette partie, AE = 2)
         = 3
IE = AD = 2,25

Donc : [tex]HE^2=HI^2+IE^2\\\\HE^2=3^2 + 2,25^2\\\\HE^2=9+5,0625=14,0625\\\\HE=\sqrt{14,0625}=3,75[/tex]

3) Dans le triangle rectangle HIE,  

[tex]sin(\widehat{IHE})=\dfrac{IE}{HE}=\dfrac{2,25}{3,75}=0,6\\\\\widehat{IHE}=sin^{-1}(0,6)\approx 37^o[/tex]


Partie B

1) L'angle [tex]\widehat{IHE}=45^o[/tex].
L'angle [tex]\widehat{HIE}=90^o[/tex]


Sachant que dans un triangle la somme des 3 angles vaut 180°, nous avons :

[tex]\widehat{IEH}=180^o-90^o-45^o=45^o[/tex]

Le triangle rectangle HIE est donc isocèle puisqu'il possède deux angles égaux à 45°

2) Le triangle HIE est isocèle avec le sommet principal en I.
Donc : HI = IE = 2,25.

Sachant que DI = AE et que DI = DH - HI = 5 - 2,25 = 2,75, nous en déduisons que DI = 2,75.

3) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².
HE² = 2,25² + 2,25²

HE² = 5,0625 + 5,0625

HE² = 10,125

[tex]HE=\sqrt{10,125}\approx3,18\ m[/tex]
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.