Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonjour,
1) Figure en pièce jointe.
2) Si un triangle est rectangle, alors on peut l'inscrire dans un cercle dont l'hypoténuse est le diamètre.
Démontrer que les 4 points A ,B, H,et N sont sur un même cercle dont on précisera le centre.
Le triangle NAB est rectangle en A (son hypoténuse est [NB]) et le triangle NHB est rectangle en H (son hypoténuse est [NB]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [NB] est le diamètre.
Le centre de ce cercle est le point O, centre du diamètre (NB)
Donc les quatre points A, B, H et N sont sur le cercle de centre O et de diamètre [NB]
3) Démontrer que les 4 points A, M, C et H sont sur un même cercle dont on précisera le centre
Le triangle MAC est rectangle en A (son hypoténuse est [MC]) et le triangle MHC est rectangle en H (son hypoténuse est [MC]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [MC] est le diamètre.
Le centre de ce cercle est le point O', centre du diamètre (MC)
Donc les quatre points A, M, C et H sont sur le cercle de centre O' et de diamètre [MC]
1) Figure en pièce jointe.
2) Si un triangle est rectangle, alors on peut l'inscrire dans un cercle dont l'hypoténuse est le diamètre.
Démontrer que les 4 points A ,B, H,et N sont sur un même cercle dont on précisera le centre.
Le triangle NAB est rectangle en A (son hypoténuse est [NB]) et le triangle NHB est rectangle en H (son hypoténuse est [NB]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [NB] est le diamètre.
Le centre de ce cercle est le point O, centre du diamètre (NB)
Donc les quatre points A, B, H et N sont sur le cercle de centre O et de diamètre [NB]
3) Démontrer que les 4 points A, M, C et H sont sur un même cercle dont on précisera le centre
Le triangle MAC est rectangle en A (son hypoténuse est [MC]) et le triangle MHC est rectangle en H (son hypoténuse est [MC]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [MC] est le diamètre.
Le centre de ce cercle est le point O', centre du diamètre (MC)
Donc les quatre points A, M, C et H sont sur le cercle de centre O' et de diamètre [MC]
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.