Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Calculs de dérivées : f(x)= e^x÷x et g(x)=x÷e^x


Sagot :

Bonjour,

[tex]1)\ (\dfrac{e^x}{x})'=\dfrac{(e^x)'\times x-x'\times e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{e^x\times x-1\times e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{xe^x-e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{(x-1)e^x}{x^2}[/tex]

[tex]2)\ (\dfrac{x}{e^x})'=\dfrac{x'\times e^x-(e^x)'\times x}{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{1\times e^x-e^x\times x}{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{(1-x)e^x }{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{1-x }{e^x}[/tex]

ou encore 

[tex]2)\ (\dfrac{x}{e^x})'=(e^{-x}\times x)'=(e^{-x})'\times x+x'\times e^{-x}\\\\=-e^{-x}\times x+1\times e^{-x}\\\\=-xe^{-x}+e^{-x}\\\\=e^{-x}(-x+1)[/tex]

Les deux réponses sont équivalentes.
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.