Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Calculs de dérivées : f(x)= e^x÷x et g(x)=x÷e^x

merci

Sagot :

Bonjour,

[tex]1)\ (\dfrac{e^x}{x})'=\dfrac{(e^x)'\times x-x'\times e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{e^x\times x-1\times e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{xe^x-e^x}{x^2}\\\\(\dfrac{e^x}{x})'=\dfrac{(x-1)e^x}{x^2}[/tex]

[tex]2)\ (\dfrac{x}{e^x})'=\dfrac{x'\times e^x-(e^x)'\times x}{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{1\times e^x-e^x\times x}{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{(1-x)e^x }{(e^x)^2}\\\\(\dfrac{x}{e^x})'=\dfrac{1-x }{e^x}[/tex]

ou encore 

[tex]2)\ (\dfrac{x}{e^x})'=(e^{-x}\times x)'=(e^{-x})'\times x+x'\times e^{-x}\\\\=-e^{-x}\times x+1\times e^{-x}\\\\=-xe^{-x}+e^{-x}\\\\=e^{-x}(-x+1)[/tex]

Les deux réponses sont équivalentes.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.