Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Bonjour,
1) Figure en pièce jointe.
2) Si un triangle est rectangle, alors on peut l'inscrire dans un cercle dont l'hypoténuse est le diamètre.
Démontrer que les 4 points A ,B, H,et N sont sur un même cercle dont on précisera le centre.
Le triangle NAB est rectangle en A (son hypoténuse est [NB]) et le triangle NHB est rectangle en H (son hypoténuse est [NB]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [NB] est le diamètre.
Le centre de ce cercle est le point O, centre du diamètre (NB)
Donc les quatre points A, B, H et N sont sur le cercle de centre O et de diamètre [NB]
3) Démontrer que les 4 points A, M, C et H sont sur un même cercle dont on précisera le centre
Le triangle MAC est rectangle en A (son hypoténuse est [MC]) et le triangle MHC est rectangle en H (son hypoténuse est [MC]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [MC] est le diamètre.
Le centre de ce cercle est le point O', centre du diamètre (MC)
Donc les quatre points A, M, C et H sont sur le cercle de centre O' et de diamètre [MC]
1) Figure en pièce jointe.
2) Si un triangle est rectangle, alors on peut l'inscrire dans un cercle dont l'hypoténuse est le diamètre.
Démontrer que les 4 points A ,B, H,et N sont sur un même cercle dont on précisera le centre.
Le triangle NAB est rectangle en A (son hypoténuse est [NB]) et le triangle NHB est rectangle en H (son hypoténuse est [NB]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [NB] est le diamètre.
Le centre de ce cercle est le point O, centre du diamètre (NB)
Donc les quatre points A, B, H et N sont sur le cercle de centre O et de diamètre [NB]
3) Démontrer que les 4 points A, M, C et H sont sur un même cercle dont on précisera le centre
Le triangle MAC est rectangle en A (son hypoténuse est [MC]) et le triangle MHC est rectangle en H (son hypoténuse est [MC]).
Ces deux triangles peuvent être inscrits dans un cercle dont l'hypoténuse [MC] est le diamètre.
Le centre de ce cercle est le point O', centre du diamètre (MC)
Donc les quatre points A, M, C et H sont sur le cercle de centre O' et de diamètre [MC]

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.