Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonjour,
On commence par factoriser par le coefficient de x².
[tex]f\left(x\right) = -50\left(x^2-10x-200\right)[/tex]
Ensuite, on factorise les x² et les x, avec une identité remarquable a²+2ab+b² = (a+b)². Ici, on a a = x, il faut déterminer b pour que le 2ab soit égal au terme en x. On prend donc la moitié du coefficient de x : -5. On retire ce carré après la parenthèse pour que l'égalité reste vérifiée.
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-25-200\right]\\f\left(x\right) = -50\left[\left(x-5\right)^2-225\right][/tex]
C'est la forme canonique du trinôme.
On factorise avec a²-b² = (a+b)(a-b) :
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-225\right]\\ f\left(x\right) = -50\left[\left(x-5\right)^2-15^2\right]\\ f\left(x\right) = -50\left(x-5-15\right)\left(x-5+15\right)\\ f\left(x\right) = -50\left(x-20\right)\left(x+10\right)[/tex]
Si tu as des questions, n'hésite pas! =)
On commence par factoriser par le coefficient de x².
[tex]f\left(x\right) = -50\left(x^2-10x-200\right)[/tex]
Ensuite, on factorise les x² et les x, avec une identité remarquable a²+2ab+b² = (a+b)². Ici, on a a = x, il faut déterminer b pour que le 2ab soit égal au terme en x. On prend donc la moitié du coefficient de x : -5. On retire ce carré après la parenthèse pour que l'égalité reste vérifiée.
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-25-200\right]\\f\left(x\right) = -50\left[\left(x-5\right)^2-225\right][/tex]
C'est la forme canonique du trinôme.
On factorise avec a²-b² = (a+b)(a-b) :
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-225\right]\\ f\left(x\right) = -50\left[\left(x-5\right)^2-15^2\right]\\ f\left(x\right) = -50\left(x-5-15\right)\left(x-5+15\right)\\ f\left(x\right) = -50\left(x-20\right)\left(x+10\right)[/tex]
Si tu as des questions, n'hésite pas! =)
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.