Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Bonjour,
On commence par factoriser par le coefficient de x².
[tex]f\left(x\right) = -50\left(x^2-10x-200\right)[/tex]
Ensuite, on factorise les x² et les x, avec une identité remarquable a²+2ab+b² = (a+b)². Ici, on a a = x, il faut déterminer b pour que le 2ab soit égal au terme en x. On prend donc la moitié du coefficient de x : -5. On retire ce carré après la parenthèse pour que l'égalité reste vérifiée.
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-25-200\right]\\f\left(x\right) = -50\left[\left(x-5\right)^2-225\right][/tex]
C'est la forme canonique du trinôme.
On factorise avec a²-b² = (a+b)(a-b) :
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-225\right]\\ f\left(x\right) = -50\left[\left(x-5\right)^2-15^2\right]\\ f\left(x\right) = -50\left(x-5-15\right)\left(x-5+15\right)\\ f\left(x\right) = -50\left(x-20\right)\left(x+10\right)[/tex]
Si tu as des questions, n'hésite pas! =)
On commence par factoriser par le coefficient de x².
[tex]f\left(x\right) = -50\left(x^2-10x-200\right)[/tex]
Ensuite, on factorise les x² et les x, avec une identité remarquable a²+2ab+b² = (a+b)². Ici, on a a = x, il faut déterminer b pour que le 2ab soit égal au terme en x. On prend donc la moitié du coefficient de x : -5. On retire ce carré après la parenthèse pour que l'égalité reste vérifiée.
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-25-200\right]\\f\left(x\right) = -50\left[\left(x-5\right)^2-225\right][/tex]
C'est la forme canonique du trinôme.
On factorise avec a²-b² = (a+b)(a-b) :
[tex]f\left(x\right) = -50\left[\left(x-5\right)^2-225\right]\\ f\left(x\right) = -50\left[\left(x-5\right)^2-15^2\right]\\ f\left(x\right) = -50\left(x-5-15\right)\left(x-5+15\right)\\ f\left(x\right) = -50\left(x-20\right)\left(x+10\right)[/tex]
Si tu as des questions, n'hésite pas! =)
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.