Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Calcul de CF :Il reste à utiliser le fait que CD = 6 puisque BCDE est un carré et que BM = F D.On a CF = 6−F D or BM = F D donc CF = 6−BMPuisque CF = 3×BM on obtient l’équation 3×BM = 6−BM que l’on va résoudre :3×BM = 6−BM 3×BM +BM = 6 4×BM = 6 BM =64=32= 1,5Donc BM = 1,5 cm et CF = 3×BM = 3×1,5 = 4,5 cmIl appliquer le théorème de Thalès dans le triangle ACF avec (BM) et (CF) paralléles.
– On sait que :• Les points A, B et C d’une part, et A, M et F d’autre part sont alignés sur deux droites sécantes en A
;• Les droites (BM) et (CF) sont parallèles car elles sont perpendiculaires à une même troisième droite (AC)
Donc d’après le théorème de Thalès on peut écrire
[tex] \frac{AB}{AC} = \frac{AM}{AF} = \frac{BM}{CF} [/tex] soit[tex] \frac{3}{9} = \frac{AM}{AF} = \frac{BM}{CF} [/tex]
On utilise pas le deuxième rapport donc :[tex] \frac{1}{3} = \frac{BM}{CF} [/tex] et par produit en croix CF = 3×BM
Calcul de CF :Il reste à utiliser le fait que CD = 6 puisque BCDE est un carré et que BM = FD .On a CF = 6−FD or BM = FD donc CF = 6−BM .Puisque CF = 3×BM on obtient l’équation 3×BM = 6−BM que l’on va résoudre :3×BM = 6−BM 3×BM +BM = 6 4×BM = 6 BM =[tex] \frac{6}{4} = \frac{3}{2} [/tex]= 1,5
Donc BM = 1,5 cm et CF = 3×BM = 3×1,5 = 4,5 cm
– On sait que :• Les points A, B et C d’une part, et A, M et F d’autre part sont alignés sur deux droites sécantes en A
;• Les droites (BM) et (CF) sont parallèles car elles sont perpendiculaires à une même troisième droite (AC)
Donc d’après le théorème de Thalès on peut écrire
[tex] \frac{AB}{AC} = \frac{AM}{AF} = \frac{BM}{CF} [/tex] soit[tex] \frac{3}{9} = \frac{AM}{AF} = \frac{BM}{CF} [/tex]
On utilise pas le deuxième rapport donc :[tex] \frac{1}{3} = \frac{BM}{CF} [/tex] et par produit en croix CF = 3×BM
Calcul de CF :Il reste à utiliser le fait que CD = 6 puisque BCDE est un carré et que BM = FD .On a CF = 6−FD or BM = FD donc CF = 6−BM .Puisque CF = 3×BM on obtient l’équation 3×BM = 6−BM que l’on va résoudre :3×BM = 6−BM 3×BM +BM = 6 4×BM = 6 BM =[tex] \frac{6}{4} = \frac{3}{2} [/tex]= 1,5
Donc BM = 1,5 cm et CF = 3×BM = 3×1,5 = 4,5 cm
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.