Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Je n'arrive pas à la question C et D. Je vous remercie de m'aider !

Je Narrive Pas À La Question C Et D Je Vous Remercie De Maider class=

Sagot :

Bonsoir,

Comme tu as déjà résolu les questions a et b, tu as dû trouver que MN = 12-2x, que [tex]MP=\sqrt{3}x[/tex] et que  [tex]f(x)=\sqrt{3}x(12-2x)[/tex]

c)  [tex]f(3)=\sqrt{3}\times3(12-2\times3)=3\sqrt{3}(12-6)=18\sqrt{3}[/tex]

[tex]f(x)-f(3)=\sqrt{3}x(12-2x)-18\sqrt{3}\\\\f(x)-f(3)=12\sqrt{3}x-2\sqrt{3}x^2-18\sqrt{3}\\\\f(x)-f(3)=-2\sqrt{3}x^2+12\sqrt{3}x-18\sqrt{3}\\\\f(x)-f(3)=-2\sqrt{3}(x^2-6x+9)\\\\f(x)-f(3)=-2\sqrt{3}(x-3)^2[/tex]

d)  [tex]f(x)-f(3)=-2\sqrt{3}(x-3)^2[/tex]

Or  [tex]\sqrt{3}(x-3)^2\ge0\Longrightarrow -2\sqrt{3}(x-3)^2\le0\\\\\Longrightarrow f(x)-f(3)\le0\\\\\Longrightarrow f(x)\le f(3)\ \ \ pour\ \ \ tout\ \ \ x\in R [/tex]

Puisque les images par f de tous les réels x sont inférieures à f(3), cette valeur f(3) est le maximum de la fonction f.
Ce maximum est atteint pour x = 3.

e) Les dimensions du rectangle sont MN = 12 - 2*3 = 6 cm et [tex]MP=\sqrt{3}\times3=3\sqrt{3}\ cm[/tex]
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.