Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonsoir,
1) Le centre du cercle est le point J(0;1).
Le rayon de ce cercle est égal à 1.
2) Montrons que MJ=1
[tex]MJ=\sqrt{(\dfrac{\sqrt{3}}{2}-0)^2+(\dfrac{3}{2}-1)^2}\\\\MJ=\sqrt{(\dfrac{\sqrt{3}}{2})^2+(\dfrac{1}{2})^2}\\\\MJ=\sqrt{\dfrac{3}{4}+\dfrac{1}{4}}\\\\MJ=\sqrt{\dfrac{4}{4}}=1[/tex]
3) a) Une équation de (BM) est de la forme y = ax + b.
Calcul du coefficient directeur :
[tex]a=\dfrac{y_M-y_B}{x_M-x_B}=\dfrac{\dfrac{3}{2}-2}{\dfrac{\sqrt{3}}{2}-0}\\\\a=\dfrac{-\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{-1}{\sqrt{3}}[/tex]
L'ordonnée à l'origine de la droite est b = 2 puisque la droite passe par le point B(0;2)
D'où [tex](BM) : y =\dfrac{-1}{\sqrt{3}}x+2[/tex]
Les coordonnées de D s'obtiennent en remplaçant y par 0 dans l'équation de (BM).
[tex]0 =\dfrac{-1}{\sqrt{3}}x+2\\\\\dfrac{1}{\sqrt{3}}x=2\\\\x=2\sqrt{3}[/tex]
D'où [tex]D(2\sqrt{3} ; 0)[/tex]
b) Par conséquent, nous avons [tex]K(\sqrt{3} ; 0)[/tex]
4) Vérifions si l'égalité de Pythagore est vérifiée dans le triangle JMK, c'est-à-dire si nous avons : JK² = JM² + MK²
[tex]JM=1[/tex] (rayon du cercle centré en J)
**************************************
[tex]MK=\sqrt{(\sqrt{3}-\dfrac{\sqrt{3}}{2})^2+(0-\dfrac{3}{2})^2}\\\\MK=\sqrt{(\dfrac{\sqrt{3}}{2})^2+(-\dfrac{3}{2})^2}\\\\MK=\sqrt{\dfrac{3}{4}+\dfrac{9}{4}}\\\\MK=\sqrt{\dfrac{12}{4}}\\\\MK=\dfrac{\sqrt{12}}{2}=\dfrac{2\sqrt{3}}{2}\\\\MK=\sqrt{3}[/tex]
**************************************
[tex]JK=\sqrt{(\sqrt{3}-0)^2+(0-1)^2}\\\\JK=\sqrt{(\sqrt{3})^2+(-1)^2}\\\\JK=\sqrt{3+1}\\\\JK=\sqrt{4}=2[/tex]
**************************************
[tex]JM^2+MK^2=1^2+(\sqrt{3})^2 = 1 + 3 = 4\\\\JK^2 = 2^2 = 4[/tex]
Donc la relation de Pythagore est vérifiée.
Par la réciproque de son théorème, nous pouvons dire que le triangle JMK est rectangle en K.
1) Le centre du cercle est le point J(0;1).
Le rayon de ce cercle est égal à 1.
2) Montrons que MJ=1
[tex]MJ=\sqrt{(\dfrac{\sqrt{3}}{2}-0)^2+(\dfrac{3}{2}-1)^2}\\\\MJ=\sqrt{(\dfrac{\sqrt{3}}{2})^2+(\dfrac{1}{2})^2}\\\\MJ=\sqrt{\dfrac{3}{4}+\dfrac{1}{4}}\\\\MJ=\sqrt{\dfrac{4}{4}}=1[/tex]
3) a) Une équation de (BM) est de la forme y = ax + b.
Calcul du coefficient directeur :
[tex]a=\dfrac{y_M-y_B}{x_M-x_B}=\dfrac{\dfrac{3}{2}-2}{\dfrac{\sqrt{3}}{2}-0}\\\\a=\dfrac{-\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{-1}{\sqrt{3}}[/tex]
L'ordonnée à l'origine de la droite est b = 2 puisque la droite passe par le point B(0;2)
D'où [tex](BM) : y =\dfrac{-1}{\sqrt{3}}x+2[/tex]
Les coordonnées de D s'obtiennent en remplaçant y par 0 dans l'équation de (BM).
[tex]0 =\dfrac{-1}{\sqrt{3}}x+2\\\\\dfrac{1}{\sqrt{3}}x=2\\\\x=2\sqrt{3}[/tex]
D'où [tex]D(2\sqrt{3} ; 0)[/tex]
b) Par conséquent, nous avons [tex]K(\sqrt{3} ; 0)[/tex]
4) Vérifions si l'égalité de Pythagore est vérifiée dans le triangle JMK, c'est-à-dire si nous avons : JK² = JM² + MK²
[tex]JM=1[/tex] (rayon du cercle centré en J)
**************************************
[tex]MK=\sqrt{(\sqrt{3}-\dfrac{\sqrt{3}}{2})^2+(0-\dfrac{3}{2})^2}\\\\MK=\sqrt{(\dfrac{\sqrt{3}}{2})^2+(-\dfrac{3}{2})^2}\\\\MK=\sqrt{\dfrac{3}{4}+\dfrac{9}{4}}\\\\MK=\sqrt{\dfrac{12}{4}}\\\\MK=\dfrac{\sqrt{12}}{2}=\dfrac{2\sqrt{3}}{2}\\\\MK=\sqrt{3}[/tex]
**************************************
[tex]JK=\sqrt{(\sqrt{3}-0)^2+(0-1)^2}\\\\JK=\sqrt{(\sqrt{3})^2+(-1)^2}\\\\JK=\sqrt{3+1}\\\\JK=\sqrt{4}=2[/tex]
**************************************
[tex]JM^2+MK^2=1^2+(\sqrt{3})^2 = 1 + 3 = 4\\\\JK^2 = 2^2 = 4[/tex]
Donc la relation de Pythagore est vérifiée.
Par la réciproque de son théorème, nous pouvons dire que le triangle JMK est rectangle en K.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.