Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjours à tous ! :)
Je n'arrive pas a faire cet exercice noté qui n'est pas facile, svp aidez moi !!
Soit deux fonctions   f(x)= (2x-1)(x+1)                 et g(x)= [tex] x^{2} [/tex] -1
1:On considère la fonction h(x)= f(x) - g(x)     Montrer que h(x)= x(x+1)
2:Dresser le tableau de signes de h. (faite le sur une feuille pour pas vous embêter car ça j'ai réussi mais vous allez je pense en avoir besoin pour la suite)
3:Résoudre l'inéquation h(x)[tex] \leq [/tex] 0
4: Conclure en résolvant l’inéquation f(x) [tex] \leq [/tex] g(x)

Sagot :

1.h(x)=f(x)-g(x)=(2x-1)(x+1)-(x²-1)=(2x-1)(x+1)-(x+1)(x-1) (dans x²-1, on reconnait l'identité remarquable (a+b)(a-b)=a²-b² )=(x+1)(2x-1-(x-1))=(x+1)(2x-1-x+1)=(x+1)x=x(x+1)
2.En gros x(x) est négatif sur ]-inf;-1]U[0;+inf[ et est positif sur [-1;0]
3.H(x)</= 0 . On utilise le tableau de signe, on sait que h(x) est négatif ou nul sur 
 ] -inf ;-1]U[0; +inf [ donc S= ] -inf;-1]U[0; +inf [ 
4. H(x) = F(x) - G(x) 
H(x) </= O équivaut donc à F(x)-G(x)</= 0 donc F(x)</= G(x) et comme cette inéquation revient donc à résoudre l'inéquation H(x) </=0 (on est parti de h(x)</=0 pour tomber sur     F(x)</= G(x) ), on en conclut que S=   ] -inf ;-1]U[0; +inf [ 
Bonjour
f'(x) = (2x-1)(x+1)      et g(x) = x²-1 
1)
h(x) = f(x)-g(x) = (2x-1)(x+1) - (x-1)(x+1)
h(x) =( x+1)(2x-1-x+1) = (x+1)(x) 
2)
H(x) = 0  pour x = -1   ou x = 0 
tableau 

x  -oo                 -1                    0                    +oo 
h(x)    positive      0    négative    0   positive 
4)
f(x) < g(x)     pour  -1 < x < 0
    
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.