Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Bonjour,
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.