Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.


Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.