Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Bonsoir,
Tu essaies de vérifier l'égalité de Pythagore en prenant l'hypoténuse égale à n²+1
Il faudrait vérifier que : (n² + 1)² = (n² - 1)² + (2n)²
Or (n² + 1)² = n^4 + 2n² + 1
(n² - 1)² + (2n)² = (n^4 - 2n² + 1) + 4n²
= n^4 - 2n² + 1 + 4n²
= n^4 + 2n² + 1.
Donc la relation de Pythagore est vérifiée puisque
(n² + 1)² et (n² - 1)² + (2n)² sont égaux à n^4 + 2n² + 1.
Par la réciproque du théorème de Pythagore, le triangle dont les côtés ont pour longueurs 2n, n² + 1 et n² - 1 est rectangle et la longueur de l'hypoténuse est n² + 1
Tu essaies de vérifier l'égalité de Pythagore en prenant l'hypoténuse égale à n²+1
Il faudrait vérifier que : (n² + 1)² = (n² - 1)² + (2n)²
Or (n² + 1)² = n^4 + 2n² + 1
(n² - 1)² + (2n)² = (n^4 - 2n² + 1) + 4n²
= n^4 - 2n² + 1 + 4n²
= n^4 + 2n² + 1.
Donc la relation de Pythagore est vérifiée puisque
(n² + 1)² et (n² - 1)² + (2n)² sont égaux à n^4 + 2n² + 1.
Par la réciproque du théorème de Pythagore, le triangle dont les côtés ont pour longueurs 2n, n² + 1 et n² - 1 est rectangle et la longueur de l'hypoténuse est n² + 1
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.