Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonsoir tout le monde,j'ai encore un très gros problèmes de Mathématiques...
Le Nombre d'or en Géométrie.
1)AIJD est un carré de côté 10cm.M est le milieu de [DJ] et C le point de la demi-droite [Dj) tel que MI=Mc
B est le point tel que ADCB soit un rectangle.
Calculer sa valeur exacte de la longueur MI est en déduire la valeur exacte de la longueur du rectangle ADCB.
2)Vérifier que le rapport "Longueur sur largeur" du rectangle ADCB est égal à Ф.Un tel rectange est appelé Rectangle d'Or.
3)Prouver que IBCJ est un rectangled'Or.
Merci de bien vouloir m'aider...



Sagot :

Bonsoir,

1) Par Pythagore dans le triangle MJI rectangle en I, nous avons : 

MI² = MJ² + IJ²
MI² = 5² + 10²
MI² = 25 + 100
MI² = 125
[tex]MI=\sqrt{125}=\sqrt{25\times5}=5\sqrt{5}[/tex]

La longueur du rectangle ADCB est DC = DM + MC
DC = DM + MI
[tex]DC = 5 + 5\sqrt{5}=5(1+\sqrt{5})[/tex]

2) [tex]\dfrac{DC}{BC}=\dfrac{5(1+\sqrt{5})}{10}=\dfrac{1+\sqrt{5}}{2}=\Phi[/tex]

3) JC = MC - MJ
[tex]JC=5\sqrt{5} - 5=5(\sqrt{5}-1)[/tex]
 
[tex]\dfrac{BC}{JC}=\dfrac{10}{5(\sqrt{5}-1)}=\dfrac{2}{\sqrt{5}-1}=\dfrac{2(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}\\\\=\dfrac{2(\sqrt{5}+1)}{[(\sqrt{5})^2-1^2]}=\dfrac{2(\sqrt{5}+1)}{5-1}=\dfrac{2(\sqrt{5}+1)}{4}=\dfrac{\sqrt{5}+1}{2}=\Phi[/tex]

Par conséquent, IBCJ est un rectangled'Or.
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.