Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour, j'ai tracé une courbe sur géogebra de fonction (x+2)^2-8 et ca me donne une parabole avec la tête en bas (je sais pas si c'est comme ca qu'on dit.. :S ) donc j'ai fait le tableau de variation et on me demande de justifier les variations et je ne sais pas comment faire ... La courbe est décroissante de -infinie a 2 et ensuite elle est croissante. 
Merci de votre lecture.


Sagot :

Bonsoir

[tex]f(x) = (x+2)^2-8[/tex]


[tex](x+2)^2\ge 0\\\\(x+2)^2 - 8\ge -8\\\\f(x)\ge -8[/tex]

Donc f admet un minimum égal à -8.

Ce minimum est atteint par x = -2 puisque f(-2) = ((-2)+2)² - 8 = 0 - 8 = -8

Puisque f atteint un minimum, f est décroissante sur ]-inf ; -2] et croissante sur [-2 :; +inf[
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.