Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.


Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.